Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6mMMg2+, while between 6 and 12mMMg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12mMMg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.

1.
S.
Diez
,
G.
Gerisch
,
K.
Anderson
,
A.
Müller-Taubenberger
, and
T.
Bretschneider
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
7601
(
2005
).
2.
M. L.
Gardel
,
J. H.
Shin
,
F. C.
MacKintosh
,
L.
Mahadevan
,
P. A.
Matsudaira
, and
D. A.
Weitz
,
Phys. Rev. Lett.
93
,
188102
(
2004
).
3.
J. H.
Shin
,
M. L.
Gardel
,
L.
Mahadevan
,
P.
Matsudaira
, and
D. A.
Weitz
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
9636
(
2004
).
4.
X.
Han
,
G.
Li
,
G. H.
Li
, and
K. C.
Lin
,
Biochemistry
36
,
10364
(
1997
).
5.
N.
Volkmann
,
D.
DeRosier
,
P.
Matsudaira
, and
D.
Hanein
,
J. Cell Biol.
153
,
947
(
2001
).
6.
J.
Kierfeld
,
T.
Kühne
, and
R.
Lipowsky
,
Phys. Rev. Lett.
95
,
038102
(
2005
).
7.
L. S.
Hirst
,
R.
Pynn
,
R. F.
Bruinsma
, and
C. R.
Safinya
,
J. Chem. Phys.
123
,
104902
(
2005
).
8.
P. V.
Jensen
and
L. I.
Larsson
,
Genet. Anal
121
,
361
(
2004
).
9.
A.
Bretscher
,
D.
Chambers
,
R.
Nguyen
, and
D.
Reczek
,
Annu. Rev. Cell Dev. Biol.
16
,
113
(
2000
).
10.
G. C. L.
Wong
,
A.
Lin
,
J. X.
Tang
,
Y.
Li
,
P. A.
Janmey
, and
C. R.
Safinya
,
Phys. Rev. Lett.
91
,
018103
(
2003
).
11.
J. X.
Tang
and
P. A.
Janmey
,
J. Biol. Chem.
271
,
8556
(
1996
).
12.
L.
Limozin
,
M.
Bärmann
, and
E.
Sackmann
,
Eur. Phys. J. E
10
,
319
(
2003
).
13.
W.
Häckl
,
M.
Bärmann
, and
E.
Sackmann
,
Phys. Rev. Lett.
80
,
1786
(
1998
).
14.
J. E.
Rothman
and
J.
Lenard
,
Science
195
,
743
(
1977
).
15.
J.
Cerbón
and
V.
Calderón
,
Biochim. Biophys. Acta
1067
,
139
(
1991
).
16.
S.
Manno
,
Y.
Takakuwa
, and
N.
Mohandas
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
1943
(
2002
).
17.
V. A.
Fadok
,
D. L.
Bratton
,
D. M.
Rose
,
A.
Pearson
,
R. A. B.
Ezekewitz
, and
P. M.
Henson
,
Nature (London)
405
,
85
(
2000
).
18.
J.
Rosing
,
G.
Tans
,
J. W.
Govers-Riemslag
,
R. F.
Zwaal
, and
H. C.
Hemker
,
J. Biol. Chem.
255
,
274
(
1980
).
19.
K.
Emoto
and
M.
Umeda
,
J. Cell Biol.
149
,
1215
(
2000
).
20.
M.
Honda
,
K.
Takiguchi
,
S.
Ishikawa
, and
H.
Hotani
,
J. Mol. Biol.
287
,
293
(
1999
).
21.
J. D.
Cortese
,
B.
Schwab
,
C.
Frieden
, and
E. L.
Elson
,
Proc. Natl. Acad. Sci. U.S.A.
86
,
5773
(
1989
).
22.
H.
Miyata
and
H.
Hotani
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
11547
(
1992
).
23.
H.
Miyata
,
S.
Nishiyama
,
K.
Akashi
, and
K.
Kinosita
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
2048
(
1999
).
24.
J. A.
Spudich
and
S.
Watt
,
J. Biol. Chem.
246
,
4866
(
1971
).
25.
C.
Gicquaud
and
P.
Wong
,
Biophys. J.
303
,
769
(
1994
).
26.
D.
Stigter
,
J. Colloid Interface Sci.
53
,
296
(
1975
).
27.
M. L.
Henle
,
C. D.
Santangelo
,
D. M.
Patel
, and
P. A.
Pincus
,
Europhys. Lett.
66
,
284
(
2004
).
28.
X. P.
Yu
and
A. E.
Carlsson
,
Biophys. J.
85
,
3532
(
2003
).
29.
T. E.
Angelini
,
H.
Liang
,
W.
Wriggers
, and
G. C. L.
Wong
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
8634
(
2003
).
30.
B. I.
Shklovskii
,
Phys. Rev. Lett.
82
,
3268
(
1999
).
31.
N.
Grønbech-Jensen
,
R. J.
Mashl
,
R. F.
Bruinsma
, and
W. M.
Gelbart
,
Phys. Rev. Lett.
78
,
2477
(
1997
).
32.
J.
Ray
and
G. S.
Manning
,
Langmuir
10
,
2450
(
1994
).
33.
H.
Noguchi
and
K.
Yoshikawa
,
J. Chem. Phys.
109
,
5070
(
1998
).
34.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Pergamon
,
London
,
1958
).
35.
H.
Murayama
and
K.
Yoshikawa
,
J. Phys. Chem. B
103
,
10517
(
1999
).
36.
G. S.
Manning
,
Q. Rev. Biophys.
11
,
179
246
(
1978
).
37.
J.
Kas
,
H.
Strey
,
J. X.
Tang
,
D.
Finger
,
R.
Ezzell
,
E.
Sackmann
, and
P. A.
Janmey
,
Biophys. J.
70
,
609
(
1996
).
38.
M.
Hosek
and
J. X.
Tang
,
Phys. Rev. E
69
,
051907
(
2004
).
39.
C.
Tanford
and
R.
Roxby
,
Biochemistry
11
,
2192
(
1972
).
40.
K.
Akashi
,
H.
Miyata
,
H.
Itoh
, and
K.
Kinosita
,
Biophys. J.
74
,
2973
(
1998
).
You do not currently have access to this content.