The growth of titanium oxide nanoparticles on reconstructed Au(111) was investigated by scanning tunneling microscopy and x-ray photoelectron spectroscopy. Ti was deposited by physical-vapor deposition at 300K. Regular arrays of titanium nanoparticles form by preferential nucleation of Ti at the elbow sites of the herringbone reconstruction. The titanium oxide nanoclusters were synthesized by subsequent exposure to O2 at 300K. Two-and three-dimensional titanium oxide nanocrystallites form during annealing in the temperature range from 600to900K. At the same time, the Au(111) surface assumes a serrated ⟨110⟩-oriented step-edge morphology suggesting step-edge pinning by titanium oxide nanoparticles. The oxidation state of the titanium oxide nanoparticles varies with annealing temperature. Specifically, annealing to 900K results in the formation of stoichiometric TiO2 nanocrystals as judged by the Ti(2p) binding energies measured in the x-ray photoelectron data. The nanodispersed TiO2 on Au(111) is an ideal system to test the various models proposed for the enhanced catalytic reactivity of supported Au nanoparticles.

2.
Q.
Wang
and
R. J.
Madix
,
Science
496
,
51
(
2002
).
3.
G.
Deo
and
I. E.
Wachs
,
J. Catal.
146
,
323
(
1994
).
4.
J. M.
Jehng
,
G.
Deo
,
B. M.
Weckuysen
, and
I. E.
Wachs
,
J. Mol. Catal. A: Chem.
110
,
41
(
1996
).
5.
P.
Forzatti
,
E.
Tronconi
,
A.
Elmi
, and
G.
Busca
,
Appl. Catal., A
157
,
387
(
1997
).
6.
M.
Valden
,
S.
Pak
,
X.
Lai
, and
D. W.
Goodman
,
Catal. Lett.
56
,
7
(
1998
).
7.
X.
Lai
,
T. P. St.
Clair
,
M.
Valden
, and
D. W.
Goodman
,
Prog. Surf. Sci.
59
,
25
(
1998
).
8.
D. A. H.
Cunningham
,
W.
Vogel
,
H.
Kageyama
,
S.
Tsubota
, and
M.
Haruta
,
J. Catal.
177
,
1
(
1998
).
9.
Y.
Iizuka
,
N.
Yamauchi
,
T.
Chijiiwa
,
S.
Arai
,
S.
Tsubota
, and
M.
Haruta
,
Catal. Today
36
,
115
(
1997
).
10.
H. M.
Sakurai
and
M.
Haruta
,
Catal. Today
29
,
361
(
1996
).
11.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
,
Science
281
,
1647
(
1998
).
12.
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Surf. Sci.
(in press).
13.
J. A.
Rodriguez
,
M.
Perez
,
M. T.
Jirsak
,
J.
Evans
,
J.
Hrbek
, and
L.
Gonzalez
,
Chem. Phys. Lett.
378
,
526
(
2003
).
14.
G.
Mills
,
M. S.
Gordon
, and
H.
Metiu
,
J. Chem. Phys.
118
,
4198
(
2003
).
15.
M. M.
Biener
and
C. M.
Friend
,
Surf. Sci. Lett.
559
,
L173
(
2004
).
16.
M. M.
Biener
,
J.
Biener
,
R.
Schalek
, and
C. M.
Friend
,
J. Chem. Phys.
121
,
12010
(
2004
).
17.
S. Y.
Quek
,
M. M.
Biener
,
J.
Biener
,
C. M.
Friend
, and
E.
Kaxiras
,
Surf. Sci.
577
,
L71
(
2005
).
18.
M. M.
Biener
,
J.
Biener
,
R.
Schalek
, and
C. M.
Friend
,
Surf. Sci.
(in press).
19.
D.
Chambliss
,
R.
Wilson
, and
S.
Chiang
,
Phys. Rev. Lett.
66
,
1721
(
1991
).
20.
J. A.
Stroscio
,
D. T.
Pierce
,
R. A.
Dragoset
, and
P. N.
First
,
J. Vac. Sci. Technol. A
10
,
1981
(
1992
).
21.
B.
Voigtlaender
,
G.
Meyer
, and
N.
Amer
,
Phys. Rev. B
44
,
10354
(
1991
).
22.
S.
Helveg
,
J. V.
Lavritsen
,
E.
Laegsgaard
,
I.
Stensgaard
,
J. K.
Norskov
,
B. S.
Clausen
,
H.
Topsoe
, and
F.
Besenbacher
,
Phys. Rev. Lett.
84
,
951
(
2000
).
23.
Z.
Song
,
T. H.
Cai
,
J. A.
Rodriguez
,
J. A.
Hrbek
,
A. S. Y.
Chan
, and
C. M.
Friend
,
J. Phys. Chem. B
107
,
1036
(
2003
).
24.
Q. G.
Wang
and
R. J.
Madix
,
Surf. Sci.
474
,
L213
(
2001
).
25.
J.
Biener
and
C. M.
Friend
(unpublished).
26.
A.
Berko
,
G.
Menesi
, and
F.
Solymosi
,
Surf. Sci.
372
,
202
(
1997
).
27.
M. A.
Lazaga
,
D. T.
Wickham
,
D. H.
Parker
,
G. N.
Kastanas
, and
B. E.
Koel
, in
Selective Catalytic Oxidation, ACS Symposium, series Vol. 523
, edited by
S. T.
Oyama
and
J. W.
Hightower
(
American Chemical Society
, Washington, DC,
1993
), p.
90
.
28.
J. J.
Pireaux
,
M.
Chtaib
,
J. P.
Delrue
,
P. A.
Thiry
,
M.
Liehr
, and
R.
Caudano
,
Surf. Sci.
141
,
211
(
1984
).
29.
D. H.
Parker
and
B. E.
Koel
,
J. Vac. Sci. Technol. A
8
,
2585
(
1990
).
You do not currently have access to this content.