In this work we have investigated the first hyperpolarizability of pNA in 1,4-dioxane solution using a quantum mechanics/molecular mechanics (QM/MM) model. The particular model adopted is the recently developed discrete solvent reaction field (DRF) model. The DRF model is a polarizable QM/MM model in which the QM part is treated using time-dependent density-functional theory and local-field effects are incorporated. This allows for direct computation of molecular effective properties which can be compared with experimental results. The solvation shift for the first hyperpolarizability is calculated to be 30% which is in good agreement with the experimental results. However, the calculated values, both in the gas phase and in solution, are by a factor of 2 larger than the experimental ones. This is in contrast to the calculation of the first hyperpolarizability for several small molecules in the gas phase where fair agreement is found with experimental. The inclusion of local-field effects in the calculations was found to be crucial and neglecting them led to results which are significantly larger. To test the DRF model the refractive index of liquid 1,4-dioxane was also calculated and found to be in good agreement with experiment.

1.
P. N.
Prasad
and
D. J.
Williams
,
Introduction to Nonlinear Optical Effects in Molecules and Polymers
(
Wiley
, New York,
1991
).
2.
Molecular Electronics
, edited by
J.
Jortner
and
M.
Ratner
(
Blackwell Science
, Oxford,
1997
).
3.
B. F.
Levine
and
C. G.
Bethea
,
J. Chem. Phys.
63
,
2666
(
1975
).
4.
J. L.
Oudar
and
D. S.
Chemla
,
J. Chem. Phys.
66
,
2664
(
1977
).
5.
K. D.
Singer
and
A. F.
Garito
,
J. Chem. Phys.
75
,
3572
(
1981
).
6.
K.
Clays
and
A.
Persoons
,
Phys. Rev. Lett.
66
,
2980
(
1991
).
7.
E.
Hendrickx
,
K.
Clays
, and
A.
Persoons
,
Acc. Chem. Res.
31
,
675
(
1998
).
8.
D. R.
Kanis
,
M. A.
Ratner
, and
T. J.
Marks
,
Chem. Rev. (Washington, D.C.)
94
,
195
(
1994
).
9.
A.
Willetts
,
J. E.
Rice
,
D. M.
Burland
, and
D.
Shelton
,
J. Chem. Phys.
97
,
7590
(
1992
).
10.
P.
Kaatz
and
D. P.
Shelton
,
J. Chem. Phys.
105
,
3918
(
1996
).
11.
I.
Shoji
,
T.
Kondo
, and
R.
Ito
,
Opt. Quantum Electron.
34
,
797
(
2002
).
12.
U.
Gubler
and
C.
Bosshard
,
Phys. Rev. B
61
,
10702
(
2000
).
13.
C.
Bosshard
,
U.
Gubler
,
P.
snd Kaatz
,
W.
Mazerant
, and
U.
Meier
,
Phys. Rev. B
61
,
10688
(
2000
).
14.
M.
Stählin
,
D. M.
Burland
, and
J. E.
Rice
,
Chem. Phys. Lett.
191
,
245
(
1992
).
15.
C. C.
Teng
and
A. F.
Garito
,
Phys. Rev. B
28
,
6766
(
1983
).
16.

The conversion factor is: β=(0.30.5)×2×35×β, where the first factor corrects for the reference value, the second factor corrects for difference conventions (T vs B) and the last factor is the relation between β and β. 1a.u.=8.6392×1033esu.

17.
F. L.
Huyskens
,
P. L.
Huyskens
, and
A. P.
Persoons
,
J. Chem. Phys.
108
,
8161
(
1998
).
18.
K. V.
Mikkelsen
,
Y.
Luo
,
H.
Ågren
, and
P.
Jørgensen
,
J. Chem. Phys.
100
,
8240
(
1994
).
19.
J. N.
Woodford
,
M. A.
Pauley
, and
C. H.
Wang
,
J. Phys. Chem. A
101
,
1989
(
1997
).
20.
C.-K.
Wang
,
Y.-H.
Wang
,
Y.
Su
, and
Y.
Luo
,
J. Chem. Phys.
119
,
4409
(
2003
).
21.
P.
Kaatz
,
E. A.
Donley
, and
D. P.
Shelton
,
J. Chem. Phys.
108
,
849
(
1998
).
22.
P.
Norman
,
Y.
Luo
,
D.
Jonsson
,
H.
Ågren
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
107
,
9063
(
1997
).
23.
W.
Bartkowiak
,
R.
Zaleśny
,
W.
Niewodniczański
, and
J.
Leszczynski
,
J. Phys. Chem. A
105
,
10702
(
2001
).
24.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
118
,
514
(
2003
).
25.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
119
,
3800
(
2003
).
26.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
119
,
12998
(
2003
).
27.
L.
Jensen
,
M.
Swart
, and
P. T.
van Duijnen
,
J. Chem. Phys.
122
,
034103
(
2005
).
28.
L.
Jensen
and
P. T.
van Duijnen
,
Int. J. Quantum Chem.
102
,
612
(
2005
).
30.
P. T.
van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
(
1998
).
31.
L.
Jensen
,
P.-O.
Åstrand
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
J. Phys. Chem. A
104
,
1563
(
2000
).
32.
L.
Jensen
,
P.-O.
Åstrand
,
A.
Osted
,
J.
Kongsted
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
116
,
4001
(
2002
).
33.
E.
Runge
and
E. K.U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
34.
E. K.U.
Gross
and
W.
Kohn
,
Adv. Quantum Chem.
21
,
255
(
1990
).
35.
R.
van Leeuwen
,
Int. J. Mod. Phys. B
15
,
1969
(
2001
).
36.
M. E.
Casida
, in
Recent Advances in Density-Functional Methods
, edited by
D. P.
Chong
(
World Scientific
, Singapore,
1995
), p.
155
.
37.
M. E.
Casida
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
, Amsterdam,
1996
).
38.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. Fonseca
Guerra
,
S. J.A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
39.
ADF
, http://www.scm.com (
2005
).
40.
S. J.A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
Comput. Phys. Commun.
118
,
119
(
1999
).
41.
S. J.A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
(
1995
).
42.
S. J.A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
109
,
10644
(
1998
).
43.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
44.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
45.
M.
Grüning
,
O. V.
Gritsenko
,
S. J.A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
114
,
652
(
2001
).
46.
M.
Grüning
,
O. V.
Gritsenko
,
S. J.A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
9591
(
2002
).
47.
D. P.
Chong
,
O. V.
Grtisenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
48.
M.
Swart
and
P. T.
van Duijnen
,
Mol. Simul.
(to be published).
49.
A. H.
de Vries
,
P. T.
van Duijnen
,
A. H.
Juffer
,
J. A.C.
Rullmann
,
J. P.
Dijkman
,
H.
Merenga
, and
B. T.
Thole
,
J. Comput. Chem.
16
,
37
(
1995
).
50.
A. H.
de Vries
,
P. T.
van Duijnen
,
R. W.
Zijlstra
, and
M.
Swart
,
J. Electron Spectrosc. Relat. Phenom.
86
,
49
(
1997
).
51.
P. T.
van Duijnen
and
A. H.
de Vries
,
Int. J. Quantum Chem.
60
,
1111
(
1996
).
52.
P. T.
van Duijnen
,
F. C.
Grozema
, and
M.
Swart
,
J. Mol. Struct.: THEOCHEM
464
,
193
(
1999
).
53.
S.
Toxvaerd
,
Mol. Phys.
72
,
159
(
1991
).
54.
K.
Coutinho
,
M. J.
De Oliveira
, and
S.
Canuto
,
Int. J. Quantum Chem.
66
,
249
(
1998
).
55.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Clarendon
, Oxford,
1987
).
56.
M.
Swart
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Comput. Chem.
22
,
79
(
2001
).
57.
D. P.
Shelton
and
A. D.
Buckingham
,
Phys. Rev. A
26
,
2787
(
1982
).
58.
D. P.
Shelton
and
V.
Mizrahi
,
Phys. Rev. A
33
,
72
(
1986
).
59.
60.
D. P.
Shelton
(private communication).
61.
F.
Sim
,
S.
Chin
,
M.
Dupuis
, and
J. E.
Rice
,
J. Phys. Chem.
97
,
1158
(
1993
).
62.
P.
Salek
,
T.
Helgaker
,
O.
Vahtras
,
H.
Ågren
,
D.
Jonsson
, and
J.
Gauss
,
Mol. Phys.
103
,
439
(
2005
).
63.
G. J.M.
Velders
,
J.-M.
Gillet
,
P. J.
Becker
, and
D.
Feil
,
J. Phys. Chem.
95
,
8601
(
1991
).
64.
G. J.M.
Velders
and
D.
Feil
,
J. Phys. Chem.
96
,
10725
(
1992
).
65.
S.
Yamada
,
K.
Yamaguchi
,
K.
Kamada
, and
K.
Ohta
,
Mol. Phys.
101
,
309
(
2003
).
66.
C. J.F.
Böttcher
,
Theory of Electric Polarization
, 2nd ed. (
Elsevier
, Amsterdam,
1973
), Vol.
1
.
67.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
, New York,
1975
).
68.
H. A.
Lorentz
,
The Theory of Electrons
, 1st ed. (
B. G. Teubner
, Leipzig,
1909
).
69.
E. M.
Breitung
,
W. E.
Vaughan
, and
R. J.
McMahon
,
Rev. Sci. Instrum.
71
,
224
(
2000
).
70.
D. M.
Bishop
,
Adv. Quantum Chem.
25
,
1
(
1994
).
71.
C.
Hättig
and
P.
Jørgensen
,
J. Chem. Phys.
109
,
2762
(
1998
).
72.
D. M.
Bishop
,
F. L.
Gu
, and
S. M.
Cybulski
,
J. Chem. Phys.
109
,
8407
(
1998
).
73.
H.
Reis
,
M. G.
Papadopoulos
, and
A.
Avramopoulos
,
J. Phys. Chem. A
107
,
3907
(
2003
).
74.
C. S.
Liu
,
R.
Glaser
,
P.
Sharp
, and
J. F.
Kauffman
,
J. Phys. Chem. A
101
,
7176
(
1997
).
75.
W. L.
Delano
,
The PyMOL Molecular Graphics System
, http://www.pymol.org (
2002
).
You do not currently have access to this content.