Density functional theory (DFT), in its current local, gradient corrected, and hybrid implementations and their extensions, is approaching an impasse. To continue to progress toward the quality of results demanded by today’s ab initio quantum chemistry encourages a new direction. We believe ab initio DFT is a promising route to pursue. Whereas conventional DFT cannot describe weak interactions, photoelectron spectra, or many potential energy surfaces, ab initio DFT, even in its initial, optimized effective potential, second-order many-body perturbation theory form [OEP (2)-semi canonical], is shown to do all well. In fact, we obtain accuracy that frequently exceeds MP2, being competitive with coupled-cluster theory in some cases. Furthermore, this is accomplished within a relatively fast computational procedure that scales like iterative second order. We illustrate our results with several molecular examples including Ne2,Be2,F2, and benzene.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford Science Publications
, Oxford,
1989
).
3.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
4.
M.
Levy
and
A.
Gorling
,
Int. J. Quantum Chem.
56
,
385
(
1995
).
5.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Ivanov
, and
S.
Hirata
,
J. Chem. Phys.
122
,
034104
(
2005
).
6.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
7.
E.
Runge
and
E. K.U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
8.
N. C.
Handy
,
M. T.
Marron
, and
H. J.
Silverstone
,
Phys. Rev.
180
,
45
(
1969
).
9.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
55
,
1200
(
1980
).
10.
S. K.
Ma
and
K. A.
Brueckner
,
Phys. Rev.
165
,
18
(
1968
).
11.
12.
R.
Cole
and
O.
Salvetti
,
Theor. Chim. Acta
37
,
329
(
1975
).
13.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
14.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
A.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
17.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
18.
T.
van Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
19.
J.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
20.
J. M.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
21.
R. J.
Bartlett
and
G. D.
Purvis
 III
,
Int. J. Quantum Chem.
14
,
561
(
1978
).
22.
R. J.
Bartlett
, in
Coupled-Cluster Theory: An Overview of Recent Developments
, edited by
David R.
Yarkony
,
Modern Electronic Structure Theory
, Part II (
World Scientific
, Singapore,
1995
), pp.
1047
1131
.
23.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
24.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
9221
(
1998
).
25.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
4282
(
1992
).
26.
J.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
27.
M.
Musial
amd
R. J.
Bartlett
,
J. Chem. Phys.
118
,
1128
(
2003
).
28.
R. J.
Bartlett
,
Int. J. Mol. Sci.
3
,
579
(
2002
).
29.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
30.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
115
,
1635
(
2001
).
31.
J. B.
Krieger
,
Y.
Li
, and
G. I.
Iafrate
,
Phys. Rev. A
45
,
101
(
1992
);
[PubMed]
J. B.
Krieger
,
Y.
Li
, and
G. I.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
).
[PubMed]
32.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
33.
A.
Gorling
,
Phys. Rev. Lett.
83
,
5459
(
1999
).
34.
I.
Grabowski
,
S.
Hirata
,
S.
Ivanov
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
4415
(
2002
).
35.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
36.
V.
Lotrich
,
I.
Schweigert
, and
R. J.
Bartlett
(unpublished).
37.
A. Facco
Bonetti
,
E.
Engel
,
R. N.
Schmid
, and
R. M.
Dreizler
,
Phys. Rev. Lett.
86
,
2241
(
2001
).
38.
Y. M.
Niquet
,
M.
Fuchs
, and
X.
Gonze
,
Phys. Rev. Lett.
90
,
219301
(
2003
).
39.
A. F.
Bonnetti
,
E.
Engel
,
R. N.
Schmid
, and
R. M.
Dreizler
,
Phys. Rev. Lett.
90
,
219302
(
2003
).
40.
C.
Filippi
,
C. J.
Umrigar
, and
X.
Gonze
,
Phys. Rev. A
54
,
4810
(
1996
).
41.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
42.
O. V.
Gritsenko
,
B.
Braida
, and
E. J.
Baerends
,
J. Chem. Phys.
119
,
1937
(
2003
).
43.
D. P.
Chong
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
44.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
6468
(
2002
).
45.
I.
Schweigert
,
V.
Lotrich
, and
R. J.
Bartlett
(unpublished).
46.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
47.
D.
Bokhan
,
I.
Schweigert
, and
R. J.
Bartlett
, Mol. Phys. (in press).
48.
V.
Lotrich
,
R. J.
Bartlett
, and
I.
Grabowski
Chem. Phys. Lett.
405
,
43
(
2005
).
49.
R. J.
Gdanitz
,
Chem. Phys. Lett.
312
,
578
(
1999
).
50.
A.
Gorling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
51.
X.
Wu
,
M. C.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
52.
T.
Henderson
and
R. J.
Bartlett
,
Phys. Rev. A
70
,
022512
(
2004
).
You do not currently have access to this content.