(H2O)N clusters generated in a supersonic expansion source with N1000 were core ionized by synchrotron radiation, giving rise to core-level photoelectron and Auger electron spectra (AES), free from charging effects. The AES is interpreted as being intermediate between the molecular and solid water spectra showing broadened bands as well as a significant shoulder at high kinetic energy. Qualitative considerations as well as ab initio calculations explain this shoulder to be due to delocalized final states in which the two valence holes are mostly located at different water molecules. The ab initio calculations show that valence hole configurations with both valence holes at the core-ionized water molecule are admixed to these final states and give rise to their intensity in the AES. Density-functional investigations of model systems for the doubly ionized final states—the water dimer and a 20-molecule water cluster—were performed to analyze the localization of the two valence holes in the electronic ground states. Whereas these holes are preferentially located at the same water molecule in the dimer, they are delocalized in the cluster showing a preference of the holes for surface molecules. The calculated double-ionization potential of the cluster (22.1eV) is in reasonable agreement with the low-energy limit of the delocalized hole shoulder in the AES.

1.
G.
Kaindl
,
T.-C.
Chiang
,
D. E.
Eastman
, and
F. J.
Himpsel
,
Phys. Rev. Lett.
45
,
1808
(
1980
);
G.
Kaindl
,
T.-C.
Chiang
, and
T.
Mandel
,
Phys. Rev. B
28
,
3612
(
1983
).
2.
M.
Lundwall
,
M.
Tchaplyguine
,
G.
Öhrwall
,
A.
Lindblad
,
S.
Peredkov
,
T.
Rander
,
S.
Svensson
,
O.
Björneholm
, accepted for publication in Surf. Sci. (2005).
4.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
, Oxford,
1997
).
5.
T. K.
Ghanty
,
V. N.
Staroverov
,
P. R.
Koren
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
122
,
1210
(
2000
).
6.
R. R.
Rye
,
T. E.
Madey
,
J. E.
Houston
, and
P. H.
Holloway
,
J. Chem. Phys.
69
,
1504
(
1978
).
7.
N.
Mårtensson
,
P.-Å.
Malmquist
,
S.
Svensson
,
E.
Basilier
,
J. J.
Pireaux
,
U.
Gelius
, and
K.
Siegbahn
,
Nouv. J. Chim.
1
,
191
(
1977
).
8.
S.
Myneni
,
Y.
Luo
,
L. Å.
Näslund
 et al.,
J. Phys.: Condens. Matter
14
,
L213
(
2002
).
9.
J.-H.
Guo
,
Y.
Luo
,
A.
Augustsson
,
J.-E.
Rubensson
,
C.
Såthe
,
H.
Ågren
,
H.
Siegbahn
, and
J.
Nordgren
,
Phys. Rev. Lett.
89
,
137402
(
2002
).
10.
C.-M.
Liegener
and
R.
Chen
,
J. Chem. Phys.
88
,
2618
(
1988
).
11.
H.
Ågren
and
K. V.
Mikkelsen
,
J. Mol. Struct.: THEOCHEM
234
,
425
(
1991
).
12.
S.
Knuts
and
H.
Ågren
,
Phys. Scr., T
T41
,
95
(
1992
).
13.
Ph.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. Å.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Science
304
,
995
(
2004
).
14.
H.
Siegbahn
,
L.
Asplund
, and
P.
Kelfve
,
Chem. Phys. Lett.
35
,
330
(
1975
).
15.
H.
Ågren
,
S.
Svensson
, and
U. I.
Wahlgren
,
Chem. Phys. Lett.
35
,
336
(
1975
).
16.
H.
Ågren
and
H.
Siegbahn
,
Chem. Phys. Lett.
69
,
424
(
1980
).
17.
M.
Arbman
,
H.
Siegbahn
,
L.
Pettersson
, and
P.
Siegbahn
,
Mol. Phys.
54
,
1149
(
1985
).
18.
H.
Ågren
and
V.
Carravetta
,
Mol. Phys.
55
,
901
(
1985
).
19.
H.
Ågren
,
A.
Cesar
, and
V.
Carravetta
,
Chem. Phys. Lett.
139
,
145
(
1987
).
20.
V.
Caravetta
and
H.
Ågren
,
Phys. Rev. A
35
,
1022
(
1987
).
21.
V.
Carravetta
,
H.
Ågren
, and
A.
Cesar
,
Chem. Phys. Lett.
148
,
210
(
1988
).
22.
A.
Cesar
,
H.
Ågren
, and
V.
Carravetta
,
Phys. Rev. A
40
,
187
(
1989
).
23.
H.
Ågren
and
O.
Vathras
,
J. Phys. B
26
,
913
(
1993
).
24.
M.
Tchaplyguine
,
R.
Feifel
,
R. R. T.
Marinho
 et al.,
Chem. Phys.
289
,
3
(
2003
).
25.
U.
Buck
and
R.
Krohne
,
J. Chem. Phys.
105
,
5408
(
1996
).
26.
O.
Björneholm
,
F.
Federmann
,
S.
Kakar
, and
T.
Möller
,
J. Chem. Phys.
111
,
546
(
1999
).
27.
A. A.
Vostriko
and
D. Yu.
Dubov
,
Z. Phys. D: At., Mol. Clusters
20
,
429
(
1991
).
28.
O.
Björneholm
,
F.
Federmann
,
F.
Fössing
, and
T.
Möller
,
Phys. Rev. Lett.
74
,
3017
(
1995
).
29.
O.
Björneholm
,
F.
Fössing
,
F.
Federmann
,
T.
Möller
, and
P.
Stampfli
,
J. Chem. Phys.
104
,
1846
(
1996
).
30.
J.
Farges
,
M. F.
De Feraudy
,
B.
Raoult
, and
G.
Torchet
,
J. Chem. Phys.
78
,
5067
(
1983
);
J.
Farges
,
M. F.
De Feraudy
,
B.
Raoult
, and
G.
Torchet
,
J. Chem. Phys.
84
,
3491
(
1986
).
31.
M.
Bässler
,
A.
Ausmees
,
M.
Jurvansuu
 et al.,
Nucl. Instrum. Methods Phys. Res. A
469
,
382
(
2001
).
32.
A.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
);
A.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
35.
M. J.
Frisch
 et al., GAUSSIAN98, Revision A.11.4, Gaussian, Inc.,
Pittsburgh
, PA,
2002
.
36.
H. P.
Hjalmarsson
,
H.
Büttner
, and
J. D.
Dow
,
Phys. Rev. B
24
,
6010
(
1981
).
37.
A.-F.
Niu
,
Y.
Zhang
,
W.-H.
Zhang
, and
J.-M.
Li
,
Phys. Rev. A
57
,
1912
(
1998
).
38.
S.
Köstlmeier
,
Ultramicroscopy
86
,
319
(
2001
).
39.
S.
McDonald
,
L.
Ojamäe
, and
S. J.
Singer
,
J. Phys. Chem. A
102
,
2824
(
1998
).
40.
J. L.
Kuo
,
C. V.
Ciobanu
,
L.
Ojamäe
,
I.
Shavitt
, and
S. J.
Singer
,
J. Chem. Phys.
118
,
3583
(
2003
).
41.
A.
Lenz
and
L.
Ojamäe
,
Phys. Chem. Chem. Phys.
2005
,
1905
(
2005
).
42.
J.
Hutter
,
A.
Alavi
,
T.
Deutsch
,
M.
Bernasconi
,
St.
Goedecker
,
D.
Marx
,
M.
Tuckerman
, and
M.
Parrinello
, CPMD,
MPI für Festkörperforschung and IBM Zurich Research Laboratory
,
1995
.
43.
R. F.
Fink
,
S. L.
Sorensen
,
A.
Naves de Brito
,
A.
Ausmees
, and
S.
Svensson
,
J. Chem. Phys.
112
,
6666
(
2000
).
44.
U.
Hergenhahn
,
A.
Rüdel
,
K.
Maier
,
A. M.
Bradshaw
,
R. F.
Fink
, and
A. T.
Wen
,
Chem. Phys.
289
,
57
(
2003
).
45.
G.
Herzberg
,
Infrared and Raman Spectra of Polyatomic Molecules
,
Molecular Spectra and Molecular Structure
, Vol.
2
(
Van Nostrand Reinhold Co.
, New York,
1955
).
46.
R.
Fink
,
J. Electron Spectrosc. Relat. Phenom.
76
,
295
(
1995
).
47.
L. S.
Cederbaum
and
F.
Tarantelli
,
J. Chem. Phys.
98
,
9691
(
1993
);
L. S.
Cederbaum
and
F.
Tarantelli
,
J. Chem. Phys.
99
,
5871
(
1993
).
48.
W. E.
Moddeman
,
T. A.
Carlson
,
M. O.
Krause
,
B. P.
Pullen
,
W. E.
Bull
, and
G. K.
Schweitzer
,
J. Chem. Phys.
55
,
2317
(
1971
).
49.
K.
Mase
,
M.
Nagasono
,
S.
Tanaka
,
T.
Urisu
,
E.
Ikenaga
,
T.
Sekitani
, and
K.
Tanaka
,
Surf. Sci.
390
,
97
(
1997
).
50.
M.
Nagasono
,
K.
Mase
,
S.
Tanaka
, and
T.
Urisu
,
Chem. Phys. Lett.
298
,
141
(
1998
).
51.
P.
van der Straten
,
R.
Morgenstern
, and
A.
Niehaus
,
Z. Phys. D: At., Mol. Clusters
8
,
35
(
1988
).
52.
R.
Sankari
,
M.
Ehara
,
H.
Nakatsuji
 et al.,
Chem. Phys. Lett.
380
,
647
(
2003
).
53.
M.
Faubel
,
B.
Steiner
, and
J. P.
Toennies
,
J. Chem. Phys.
106
,
9013
(
1997
).
54.
M.
Tchaplyguine
,
M.
Gisselbrecht
,
J.
Schulz
 et al.,
J. Chem. Phys.
120
,
345
(
2004
).
55.
D.
Minelli
,
F.
Tarantelli
,
A.
Sgamellotti
, and
L. S.
Cederbaum
,
J. Chem. Phys.
99
,
6688
(
1993
).
56.
F. O.
Gottfried
,
L. S.
Cederbaum
, and
F.
Tarantelli
,
J. Chem. Phys.
104
,
9756
(
1996
).
57.
A.
Kay
,
E.
Arenholz
,
S.
Mun
,
F. J.
Garcia de Abajo
,
C. S.
Fadley
,
R.
Denecke
,
Z.
Hussain
, and
M.
Van Hove
,
Science
281
,
679
(
1998
).
58.
A. W.
Kay
,
F. J. G.
de Abajo
,
S.-H.
Yang
 et al.,
J. Electron Spectrosc. Relat. Phenom.
114–116
,
1179
(
2001
).
59.
W.
Kuch
,
F.
Offi
,
S. S.
Kang
,
S.
Imada
,
J.
Kirschner
, and
X.
Gao
,
J. Electron Spectrosc. Relat. Phenom.
123
,
11
(
2002
).
60.
S. L.
Sorensen
,
R.
Fink
,
R.
Feifel
 et al.,
Phys. Rev. A
64
,
012719
(
2001
).
61.
M. N.
Piancastelli
,
R. F.
Fink
,
R.
Feifel
 et al.,
J. Phys. B
33
,
1819
(
2000
).
62.
P.
Salek
,
R. F.
Fink
,
F.
Gel’mukhanov
 et al.,
Phys. Rev. A
62
,
062506
(
2000
).
63.
B.
Brena
,
D.
Nordlund
,
M.
Odelius
,
H.
Ogasawara
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
Phys. Rev. Lett.
93
,
148302
(
2004
).
64.
E.
Antonides
,
E. C.
Janse
, and
G. A.
Sawatzky
,
Phys. Rev. B
15
,
1669
(
1977
).
65.
G. A.
Sawatzky
,
Phys. Rev. Lett.
39
,
504
(
1977
).
66.
You do not currently have access to this content.