Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London–van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.

1.
W. A.
Ducker
,
T. J.
Senden
, and
R. M.
Pashley
,
Langmuir
8
,
1831
(
1992
).
2.
A.
Grabbe
and
R. G.
Horn
,
J. Colloid Interface Sci.
157
,
375
(
1993
).
3.
Y. I.
Rabinovich
,
B. V.
Derjaguin
, and
N. V.
Churaev
,
Adv. Colloid Interface Sci.
16
,
63
(
1982
).
4.
G.
Peschel
,
P.
Belouschek
,
M. M.
Müller
,
M. R.
Müller
, and
R.
König
,
Colloid Polym. Sci.
260
,
444
(
1982
).
5.
R. G.
Horn
,
D. T.
Smith
, and
W.
Haller
,
Chem. Phys. Lett.
162
,
404
(
1989
).
6.
J. P.
Chapel
,
Langmuir
10
,
4237
(
1994
).
7.
G.
Toikka
and
R. A.
Hayes
,
J. Colloid Interface Sci.
191
,
102
(
1997
).
8.
P. G.
Hartley
,
I.
Larson
, and
P. J.
Scales
,
Langmuir
13
,
2207
(
1997
).
9.
B. V.
Derjaguin
and
L.
Landau
,
Acta Physicochim. URSS
14
,
633
(
1941
).
10.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
, Amsterdam,
1948
).
11.
L. H.
Allen
and
E.
Matijević
,
J. Colloid Interface Sci.
31
,
287
(
1969
).
12.
H.
Yotsumoto
and
R. H.
Yoon
,
J. Colloid Interface Sci.
157
,
434
(
1993
).
13.
G.
Vigil
,
Z.
Xu
,
S.
Steinberg
, and
J. N.
Israelachvili
,
J. Colloid Interface Sci.
165
,
367
(
1994
).
14.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
, New York,
1987
), Vol.
1
.
15.
R. H.
Yoon
and
S.
Vivek
,
J. Colloid Interface Sci.
204
,
179
(
1998
).
16.
R. M.
Pashley
,
Adv. Colloid Interface Sci.
16
,
57
(
1982
).
17.
N. V.
Churaev
and
B. V.
Derjaguin
,
J. Colloid Interface Sci.
103
,
542
(
1985
).
18.
D. M.
LeNeveu
,
R. P.
Rand
, and
V. A.
Parsegian
,
Nature (London)
259
,
601
(
1976
).
19.
R. P.
Rand
,
N.
Fuller
,
V. A.
Parsegian
, and
D. C.
Rau
,
Biochemistry
27
,
7711
(
1988
).
20.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
21.
M. W.
Rutland
and
T. J.
Senden
,
Langmuir
9
,
412
(
1993
).
22.
P. M.
Claesson
,
T.
Ederth
,
V.
Bergeron
, and
M. W.
Rutland
,
Adv. Colloid Interface Sci.
67
,
119
(
1996
).
23.
M.
Giesbers
, Ph.D. thesis,
University of Wageningen
,
2001
.
24.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
403
(
1993
).
25.
S.
Marčelja
and
N.
Radić
,
Chem. Phys. Lett.
42
,
129
(
1976
).
26.
N.
Goldenfeld
,
Lectures on Phase Transitions and the Renormalization Group
(
Addison-Wesley
, New York,
1992
).
27.

In the Ref. 25 there is a mistake in the calculus; thus, the final expression for VH is different from Eq. (4).

28.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
, London,
1991
).
29.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science
(
Academic
, London,
1995
), Vol.
2
.
30.
B.
Jönsson
and
H.
Wennerström
,
J. Chem. Soc., Faraday Trans. 2
79
,
19
(
1983
).
31.
R.
Kjellander
,
J. Chem. Soc., Faraday Trans. 2
80
,
1323
(
1984
).
32.
P.
Attard
and
G. N.
Patey
,
Phys. Rev. A
43
,
2953
(
1991
).
33.
S. E.
Babayan
,
J. Y.
Jeong
,
A.
Schütze
,
V. J.
Tu
,
M.
Moravej
,
G. S.
Selwyn
, and
R. F.
Hicks
,
Plasma Sources Sci. Technol.
10
,
573
(
2001
).
34.
P.
Attard
,
R.
Kjellander
,
D. J.
Michell
, and
B.
Jönsson
,
J. Chem. Phys.
89
,
1664
(
1988
).
35.
B.
Jönsson
,
P.
Attard
, and
D. J.
Michell
,
J. Phys. Chem.
92
,
5001
(
1988
).
36.
P.
Attard
and
D. J.
Michell
,
J. Chem. Phys.
88
,
4391
(
1988
).
37.
V. N.
Paunov
,
E. W.
Kaler
,
S. I.
Sandler
, and
D. N.
Petsev
,
J. Colloid Interface Sci.
240
,
640
(
2001
).
38.
J. A.
Molina-Bolívar
,
F.
Galisteo-González
, and
R.
Hidalgo-Álvarez
,
Phys. Rev. E
55
,
4522
(
1997
).
39.
J. A.
Molina-Bolívar
and
J. L.
Ortega-Vinuesa
,
Langmuir
15
,
2644
(
1999
).
40.
D. N.
Petsev
and
P. G.
Vekilov
,
Phys. Rev. Lett.
84
,
1339
(
2000
).
41.
J. J.
Valle-Delgado
,
J. A.
Molina-Bolívar
,
F.
Galisteo-González
,
M. J.
Gálvez-Ruiz
,
A.
Feiler
, and
M. W.
Rutland
,
J. Phys. Chem. B
108
,
5365
(
2004
).
42.
J. J.
Valle-Delgado
,
J. A.
Molina-Bolívar
,
F.
Galisteo-González
,
M. J.
Gálvez-Ruiz
,
A.
Feiler
, and
M. W.
Rutland
,
Phys. Chem. Chem. Phys.
6
,
1482
(
2004
).
43.
M.
Manciu
and
E.
Ruckenstein
,
Langmuir
17
,
7061
(
2001
).
44.
M.
Manciu
and
E.
Ruckenstein
,
Langmuir
17
,
7582
(
2001
).
45.
E.
Ruckenstein
and
M.
Manciu
,
Langmuir
18
,
7584
(
2002
).
46.
H.
Huang
,
M.
Manciu
, and
E.
Ruckenstein
,
J. Colloid Interface Sci.
263
,
156
(
2003
).
47.
D.
Schiby
and
E.
Ruckenstein
,
Chem. Phys. Lett.
95
,
435
(
1983
).
48.
D.
Schiby
and
E.
Ruckenstein
,
Chem. Phys. Lett.
100
,
277
(
1983
).
49.
T.
López-León
,
P. M.
Gea-Jódar
,
D.
Bastos-González
, and
J. L.
Ortega-Vinuesa
,
Langmuir
21
,
87
(
2005
).
50.
P.
Attard
and
M. T.
Batchelor
,
Chem. Phys. Lett.
149
,
206
(
1988
).
51.
B. A.
Bergenståhl
and
P.
Stenius
,
J. Phys. Chem.
91
,
5944
(
1987
).
52.
R.
Kjellander
and
S.
Marčelja
,
Chem. Phys. Lett.
120
,
393
(
1985
).
53.
N. A. M.
Besseling
, Ph.D. thesis,
University of Wageningen
,
1993
.
54.
N. A. M.
Besseling
,
Langmuir
13
,
2113
(
1997
).
55.
M. L.
Belaya
,
M. V.
Feigel’man
, and
V. G.
Levadny
,
Chem. Phys. Lett.
126
,
361
(
1986
).
56.
P.
Attard
,
D.
Wei
, and
G. N.
Patey
,
Chem. Phys. Lett.
172
,
69
(
1990
).
57.
D. W. R.
Gruen
and
S.
Marčelja
,
J. Chem. Soc., Faraday Trans. 2
79
,
211
(
1983
).
58.
D. W. R.
Gruen
and
S.
Marčelja
,
J. Chem. Soc., Faraday Trans. 2
79
,
225
(
1983
).
59.
S.
Basu
and
M. M.
Sharma
,
J. Colloid Interface Sci.
165
,
355
(
1994
).
60.
R. M.
Pashley
,
J. Colloid Interface Sci.
80
,
153
(
1981
).
61.
R. M.
Pashley
,
J. Colloid Interface Sci.
83
,
531
(
1981
).
62.
R. M.
Pashley
and
J. N.
Israelachvili
,
J. Colloid Interface Sci.
97
,
446
(
1984
).
63.
J. J.
Spitzer
,
Nature (London)
310
,
396
(
1984
).
64.
65.
J. J.
Spitzer
,
Colloid Polym. Sci.
281
,
589
(
2003
).
66.
A. A.
Kornyshev
and
S.
Leikin
,
Phys. Rev. A
40
,
6431
(
1989
).
67.
S.
Leikin
and
A. A.
Kornyshev
,
J. Chem. Phys.
92
,
6890
(
1990
); 
S.
Leikin
and
A. A.
Kornyshev
,
J. Chem. Phys.
94
,
8640
(E) (
1991
).
68.
S.
Leikin
,
J. Chem. Phys.
95
,
5224
(
1991
).
69.
J.
Forsman
,
C. E.
Woodward
, and
B.
Jönsson
,
Langmuir
13
,
5459
(
1997
).
70.
J.
Forsman
,
C. E.
Woodward
, and
B.
Jönsson
,
J. Colloid Interface Sci.
195
,
264
(
1997
).
71.
S.
Marčelja
,
Nature (London)
385
,
689
(
1997
).
72.
A.
Trokhymchuk
,
D.
Henderson
, and
D. T.
Wasan
,
J. Colloid Interface Sci.
210
,
320
(
1999
).
73.
J. N.
Israelachvili
and
R. M.
Pashley
,
Nature (London)
306
,
249
(
1983
).
You do not currently have access to this content.