It has been generally accepted that there are significant quadrupolar and bulk contributions to the second-harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena: the breaking of the macroscopic Kleinman symmetry and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because the sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of the breaking of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well.

1.
T. F.
Heinz
,
H. W. K.
Tom
, and
Y. R.
Shen
,
Phys. Rev. A
28
,
1883
(
1983
).
2.
G. L.
Richmond
,
J. M.
Robinson
, and
V. L.
Shannon
,
Prog. Surf. Sci.
28
,
1
(
1988
).
3.
M. C.
Goh
,
J. M.
Hicks
,
K.
Kemnitz
,
G. R.
Pinto
,
K.
Bhattacharyya
,
K. B.
Eisenthal
, and
T. F.
Heinz
,
J. Phys. Chem.
92
,
5074
(
1988
).
4.
M. C.
Goh
and
K. B.
Eisenthal
,
Chem. Phys. Lett.
157
,
101
(
1989
).
5.
Y. R.
Shen
,
Annu. Rev. Phys. Chem.
40
,
327
(
1989
).
6.
K. B.
Eisenthal
,
Acc. Chem. Res.
26
,
636
(
1993
).
7.
X. L.
Zhao
,
S. W.
Ong
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
202
,
513
(
1993
).
8.
J. C.
Conboy
,
J. L.
Daschbach
, and
G. L.
Richmond
,
J. Phys. Chem.
98
,
9688
(
1994
).
9.
A. A. T.
Luca
,
P.
Hebert
,
P. F.
Brevet
, and
H. H.
Girault
,
J. Chem. Soc., Faraday Trans.
91
,
1763
(
1995
).
10.
K. B.
Eisenthal
,
Chem. Rev. (Washington, D.C.)
96
,
1343
(
1996
).
11.
R.
Antoine
,
F.
Bianchi
,
P. F.
Brevet
, and
H. H.
Girault
,
J. Chem. Soc., Faraday Trans.
93
,
3833
(
1997
).
12.
A. J.
Fordyce
,
W. J.
Bullock
,
A. J.
Timson
,
S.
Haslam
,
R. D.
Spencer-Smith
,
A.
Alexander
, and
J. G.
Frey
,
Mol. Phys.
99
,
677
(
2001
).
13.
P.
Guyot-Sionnest
,
W.
Chen
, and
Y. R.
Shen
,
Phys. Rev. B
33
,
8254
(
1986
).
14.
P.
Guyot-Sionnest
and
Y. R.
Shen
,
Phys. Rev. B
35
,
4420
(
1987
).
15.
P.
Guyot-Sionnest
and
Y. R.
Shen
,
Phys. Rev. B
38
,
7985
(
1988
).
16.
D. L.
Andrews
and
N. P.
Blake
,
Phys. Rev. A
38
,
3113
(
1988
).
17.
X. D.
Zhu
and
Y. R.
Shen
,
Phys. Rev. A
41
,
4549
(
1990
).
18.
D. L.
Andrews
and
N. P.
Blake
,
Phys. Rev. A
41
,
4550
(
1990
).
19.
T. F.
Heinz
and
D. P.
Divincenzo
,
Phys. Rev. A
42
,
6249
(
1990
).
20.
D. L.
Andrews
,
J. Mod. Opt.
40
,
939
(
1993
).
21.
T. F.
Heinz
, in
Nonlinear Surface Electromagnetic Phenomena
, edited by
H. E.
Ponath
and
G. I.
Stegman
(
North-Holland
, Armsterdam,
1991
), pp.
353
416
.
22.
Y. R.
Shen
,
Appl. Phys. B: Lasers Opt.
68
,
295
(
1999
).
23.
H.
Held
,
A. I.
Lvovsky
,
X.
Wei
, and
Y. R.
Shen
,
Phys. Rev. B
66
,
205110
(
2002
).
24.
A.
Morita
,
Chem. Phys. Lett.
398
,
361
(
2004
).
25.
D. A.
Kleinman
,
Phys. Rev.
126
,
1977
(
1962
).
26.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
70
,
2313
(
1993
).
27.
From Wang’s notebook kept in the Eisenthal group. Recorded between January 25,
1993
and February 10,
1993
.
28.
N.
Bloembergen
,
R. K.
Chang
,
S. S.
Jha
, and
C. H.
Lee
,
Phys. Rev.
174
,
813
(
1968
).
29.
F.
Brown
and
M.
Matsuoka
,
Phys. Rev.
185
,
985
(
1969
).
30.
C. K.
Chen
,
A. R. B.
de Castro
, and
Y. R.
Shen
,
Phys. Rev. Lett.
46
,
145
(
1981
).
31.
C. K.
Chen
,
T. F.
Heinz
,
D.
Ricard
, and
Y. R.
Shen
,
Phys. Rev. Lett.
46
,
1010
(
1981
).
32.
C. K.
Chen
,
T. F.
Heinz
,
D.
Ricard
, and
Y. R.
Shen
,
Phys. Rev. B
27
,
1965
(
1983
).
33.
T. F.
Heinz
,
C. K.
Chen
,
D.
Ricard
, and
Y. R.
Shen
,
Phys. Rev. Lett.
48
,
478
(
1982
).
34.
R. W.
Boyd
,
Nonlinear Optics
(
Academic
, San Diego, CA,
1992
).
35.
P. A.
Franken
and
J. F.
Ward
,
Rev. Mod. Phys.
35
,
23
(
1963
).
36.
C. A.
Dailey
,
B. J.
Burke
, and
G. J.
Simpson
,
Chem. Phys. Lett.
390
,
8
(
2004
).
37.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley
, New York,
2003
).
38.
V.
Ostroverkhov
,
K. D.
Singer
, and
R. G.
Petschek
,
J. Opt. Soc. Am. B
18
,
1858
(
2001
).
39.
G. J.
Simpson
,
J. M.
Perry
, and
C. L.
Ashmore-Good
,
Phys. Rev. B
66
,
165437
(
2002
).
40.
A. J.
Moad
and
G. J.
Simpson
,
J. Phys. Chem. B
108
,
3548
(
2004
).
41.
G. R.
Pinto
, Ph.D. thesis, Department of Chemistry,
Columbia University
,
1988
.
42.
M. B.
Feller
,
W.
Chen
, and
Y. R.
Shen
,
Phys. Rev. A
43
,
6778
(
1991
).
43.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
44.
Y.
Rao
,
Y. S.
Tao
, and
H. F.
Wang
,
J. Chem. Phys.
119
,
5226
(
2003
).
45.
T. G.
Zhang
,
C. H.
Zhang
, and
G. K.
Wong
,
J. Opt. Soc. Am. B
7
,
902
(
1990
).
46.
R. M.
Plocinik
and
G. J.
Simpson
,
Anal. Chim. Acta
496
,
133
(
2003
).
47.
A. J.
Timson
,
R. D.
Spencer-Smith
,
A. K.
Alexander
,
R.
Greef
, and
J. G.
Frey
,
Meas. Sci. Technol.
14
,
508
(
2003
).
48.
S. J.
Lin
and
S. R.
Meech
,
Langmuir
16
,
2893
(
2000
).
49.
X.
Wei
,
S. C.
Hong
,
X. W.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. E
62
,
5160
(
2000
).
50.
D. S.
Zheng
and
H. F.
Wang
,
J. Chem. Phys.
(unpublished).
51.
P. X.
Ye
and
Y. R.
Shen
,
Phys. Rev. B
28
,
4288
(
1983
).
52.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 81st ed. (
CRC
, New York,
2000
).
53.
P. F.
Brevet
,
Surface Second Harmonic Generation
(
Press Polytechniques et Universitaires Romandes
, Lausanne,
1997
).
54.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
, Reading
1980
), p.
147
.
55.
H. F.
Wang
,
Chin. J. Phys. Chem.
17
,
362
(
2004
).
56.
P.
Fischer
and
A. D.
Buckingham
,
J. Opt. Soc. Am. B
15
,
2951
(
1998
).
57.
H.
Okabe
,
PhotoChemistry of Small Molecules
(
Wiley
, New York,
1978
);
J. W. C.
Johns
,
Can. J. Phys.
41
,
209
(
1963
);
S.
Bell
,
J. Mol. Spectrosc.
16
,
205
(
1965
);
J. A.
Horsley
and
W. H.
Fink
,
J. Chem. Phys.
50
,
750
(
1969
);
K. J.
Miller
,
S. R.
Mielczarek
, and
M.
Krauss
,
J. Chem. Phys.
51
,
26
(
1969
).
58.
J. F.
Ward
,
Rev. Mod. Phys.
37
,
1
(
1965
).
59.
Y.
Rao
,
X. M.
Guo
,
Y. S.
Tao
, and
H. F.
Wang
,
J. Phys. Chem. A
108
,
7987
(
2004
).
60.
K. O.
Sylvester-Hvid
,
K. V.
Mikkelsen
,
P.
Norman
,
D.
Johnson
, and
J.
Ågren
,
J. Phys. Chem. A
108
,
8961
(
2004
).
61.
Y.
Luo
,
H.
Ågren
,
O.
Vahtras
,
P.
Jørgensen
,
V.
Spirko
, and
H.
Hettema
,
J. Chem. Phys.
98
,
7159
(
1993
).
62.
K. O.
Sylvester-Hvid
,
K. V.
Mikkelsen
,
D.
Jonsson
,
P.
Norman
, and
H.
Ågren
,
J. Chem. Phys.
109
,
5576
(
1998
).
63.
G.
Maroulis
,
J. Chem. Phys.
113
,
1813
(
2000
).
64.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
119
,
10519
(
2003
).
65.
G. L.
Richmond
,
Annu. Rev. Phys. Chem.
52
,
357
(
2001
).
66.
G. L.
Richmond
,
Chem. Rev. (Washington, D.C.)
102
,
2693
(
2002
).
67.
W.
Gan
,
D.
Wu
,
Z.
Zhang
, and
H. F.
Wang
,
Phys. Rev. Lett.
(submitted).
68.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
R. R.
Feng
, and
H. F.
Wang
,
J. Chem. Phys.
(submitted).
69.
M. G.
Brown
,
E. A.
Raymond
,
H. C.
Allen
,
L. F.
Scatena
, and
G. L.
Richmond
,
J. Phys. Chem. A
104
,
10220
(
2000
).
70.
G. J.
Simpson
and
K. L.
Rowlen
,
J. Am. Chem. Soc.
121
,
2635
(
1999
).
71.
R. M.
Townsend
and
S. A.
Rice
,
J. Chem. Phys.
94
,
2207
(
1991
).
72.
M. A.
Wilson
,
A.
Pohorille
, and
L. R.
Pratt
,
J. Phys. Chem.
91
,
4873
(
1987
).
73.
B.
Yang
,
D. E.
Sullivan
,
B.
Tjipto-Margo
, and
C. G.
Gray
,
J. Phys.: Condens. Matter
3
,
F109
(
1991
).
74.
75.
N. A. M.
Besseling
and
J.
Lyklema
,
J. Phys. Chem.
98
,
11610
(
1994
).
76.
R. S.
Taylor
,
L. X.
Dang
, and
B. C.
Garrett
,
J. Phys. Chem.
100
,
11720
(
1996
).
77.
V. P.
Sokhan
and
D. J.
Tildesley
,
Mol. Phys.
92
,
625
(
1997
).
78.
C.
Fradin
,
A.
Braslau
,
D.
Luzet
,
D.
Smilgies
,
M.
Alba
,
N.
Boudet
,
K.
Mecke
, and
J.
Daillant
,
Nature (London)
403
,
871
(
2000
).
79.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
(
2000
).
80.
A.
Perry
,
H.
Ahlborn
,
B.
Space
, and
P. B.
Moore
,
J. Chem. Phys.
118
,
8411
(
2003
).
81.
I-F. W.
Kuo
and
C. J.
Mundy
,
Science
303
,
658
(
2004
).
82.
K.
Jaqaman
,
K.
Tuncay
, and
P. J.
Ortoleva
,
J. Chem. Phys.
120
,
926
(
2004
).
83.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
H.
Chen
, and
H. F.
Wang
,
J. Phys. Chem. B
108
,
7297
(
2004
).
84.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
14118
(
2005
).
85.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B. H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
86.
W.
Gan
,
B. H.
Wu
,
H.
Chen
,
Y.
Guo
, and
H. F.
Wang
,
Chem. Phys. Lett.
406
,
467
(
2005
).
87.
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
48
,
2183
(
2003
);
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
49
,
899
(
2004
).
88.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y. R.
Shen
,
Phys. Rev. Lett.
94
,
046102
(
2005
).
89.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8053
(
2005
).
90.
H.
Chen
,
W.
Gan
,
R.
Lu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8064
(
2005
).
91.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Z.
Zhang
, and
H. F.
Wang
,
Chem. Phys. Lett.
408
,
284
(
2005
).
92.
A.
Braslau
,
M.
Deutsch
,
P. S.
Pershan
,
A. H.
Weiss
,
J.
Als-Nielsen
, and
J.
Bohr
,
Phys. Rev. Lett.
54
,
114
(
1985
).
93.
A.
Braslau
,
P. S.
Pershan
,
G.
Swislow
,
B. M.
Ocko
, and
J.
Als-Nielsen
,
Phys. Rev. A
38
,
2457
(
1988
).
94.
R. M.
Townsend
,
J.
Gryko
, and
S. A.
Rice
,
J. Chem. Phys.
82
,
4391
(
1985
).
95.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
96.
Y. L.
Yeh
,
C.
Zhang
,
H.
Held
,
A. M.
Mebel
,
X.
Wei
,
S. H.
Lin
, and
Y. R.
Shen
,
J. Chem. Phys.
114
,
1837
(
2001
).
97.
L.
Pártay
,
P.
Jedlovszky
, and
G.
Horvai
,
J. Phys. Chem. B
109
,
12014
(
2005
).
You do not currently have access to this content.