The free energy of solvation for a large number of representative solutes in various solvents has been calculated from the polarizable continuum model coupled to molecular dynamics computer simulation. A new algorithm based on the Voronoi-Delaunay triangulation of atom-atom contact points between the solute and the solvent molecules is presented for the estimation of the solvent-accessible surface surrounding the solute. The volume of the inscribed cavity is used to rescale the cavitational contribution to the solvation free energy for each atom of the solute atom within scaled particle theory. The computation of the electrostatic free energy of solvation is performed using the Voronoi-Delaunay surface around the solute as the boundary for the polarizable continuum model. Additional short-range contributions to the solvation free energy are included directly from the solute-solvent force field for the van der Waals-type interactions. Calculated solvation free energies for neutral molecules dissolved in benzene, water, CCl4, and octanol are compared with experimental data. We found an excellent correlation between the experimental and computed free energies of solvation for all the solvents. In addition, the employed algorithm for the cavity creation by Voronoi-Delaunay triangulation is compared with the GEPOL algorithm and is shown to predict more accurate free energies of solvation, especially in solvents composed by molecules with nonspherical molecular shapes.

1.
A.
Ben-Naim
,
J. Phys. Chem.
82
,
792
(
1978
).
2.
J.
Tomasi
and
M.
Pérsico
,
Chem. Rev. (Washington, D.C.)
94
,
2027
(
1994
);
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev. (Washington, D.C.)
105
,
2999
(
2005
).
3.
M.
Born
,
Z. Phys.
1
,
45
(
1920
);
R.
Bell
,
Trans. Faraday Soc.
27
,
797
(
1931
);
J. G.
Kirkwood
,
J. Chem. Phys.
2
,
351
(
1934
);
L.
Onsager
,
J. Am. Chem. Soc.
58
,
1486
(
1936
).
4.
A very recent overview of this topic is presented by
D.
Rinaldi
,
A.
Bouchy
,
J. L.
Rivail
, and
V.
Dillet
,
J. Chem. Phys.
120
,
2343
(
2004
) and references cited therein.
5.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
(
1981
).
6.
M.
Orozco
and
F. J.
Luque
,
Chem. Rev. (Washington, D.C.)
100
,
4187
(
2000
).
7.
A.
Klamt
and
G.
Schuurmann
,
J. Chem. Soc., Perkin Trans. 1
2
,
799
(
1993
).
8.
See, for example,
C.
Chambers
,
G.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem.
100
,
16385
(
1996
).
9.
F. M.
Floris
,
M.
Selmi
,
A.
Tani
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
6353
(
1997
).
10.
E.
Gallicchio
,
M. M.
Kubo
, and
R. M.
Levy
,
J. Phys. Chem. B
104
,
6271
(
2000
).
11.
See, for example,
T. P.
Straatsma
and
J. A.
McCammon
,
J. Chem. Phys.
95
,
1175
(
1991
).
12.
See, for example,
D. A.
Pearlman
and
P. A.
Kollman
,
J. Chem. Phys.
90
,
2460
(
1989
).
13.
P. F. B.
Gonçalves
and
H.
Stassen
,
J. Comput. Chem.
23
,
706
(
2002
).
14.
R. A.
Pierotti
,
Chem. Rev. (Washington, D.C.)
76
,
717
(
1976
);
P.
Claverie
,
Intermolecular Interactions: From Diatomics to Biomolecules
, edited by
B.
Pullman
(
Wiley
, Chichester,
1978
), p.
69
.
15.
J. L.
Pascual-Ahuir
,
E.
Silla
,
J.
Tomasi
, and
R.
Bonaccorsi
,
J. Comput. Chem.
8
,
778
(
1987
);
J. L.
Pascual-Ahuir
and
E.
Silla
,
J. Comput. Chem.
11
,
1047
(
1990
);
E.
Silla
,
F.
Villar
,
O.
Nilsson
,
J. L.
Pascual-Ahuir
, and
O.
Tapia
,
J. Mol. Graphics
8
,
168
(
1990
);
E.
Silla
,
I.
Tuñón
, and
J. L.
Pascual-Ahuir
,
J. Comput. Chem.
12
,
1077
(
1991
).
16.
P. F. B.
Gonçalves
and
H.
Stassen
,
J. Comput. Chem.
24
,
1758
(
2003
).
17.
P. F. B.
Gonçalves
and
H.
Stassen
,
Pure Appl. Chem.
76
,
231
(
2004
).
18.
In statistical mechanical theories for molecular fluids, atom-atom pair distribution functions are often used to describe intermolecular orientations; see, for example,
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids. I. Fundamentals
(
Clarendon
, Oxford,
1984
).
19.
F. P.
Preparata
and
M. I.
Shamos
,
Computational Geometry: An Introduction
(
Springer
, New York,
1985
).
20.
M.
Berg
,
Computational Geometry: Algorithm and Applications
, 2nd ed. (
Springer
, New York,
2000
).
21.
B.
Lee
and
F. M.
Richards
,
J. Mol. Biol.
55
,
379
(
1971
).
22.
M. L.
Connolly
,
J. Appl. Crystallogr.
16
,
548
(
1983
).
23.
P.
Laug
and
H.
Borouchaki
,
Int. J. Quantum Chem.
93
,
131
(
2003
).
24.
J.
Buša
,
J.
Džurina
,
E.
Hayryan
,
S.
Hayryan
,
C.-K.
Hu
,
J.
Plavka
,
I.
Pokorný
,
J.
Skřivánek
, and
M.-C.
Wu
,
Comput. Phys. Commun.
165
,
59
(
2005
).
C. S.
Pomelli
,
J.
Tomasi
,
M.
Cossi
, and
V.
Barone
,
J. Comput. Chem.
20
,
1694
(
1999
).
26.
C. S.
Pomelli
,
J.
Tomasi
, and
R.
Cammi
,
J. Comput. Chem.
22
,
1262
(
2001
).
27.
H.
Li
and
J. H.
Jensen
,
J. Comput. Chem.
25
,
1449
(
2004
).
28.
C. S.
Pomelli
,
J. Comput. Chem.
25
,
1532
(
2004
).
29.
For recent applications of Voronoi polyhedra in condensed systems, see
M.
Sega
,
P.
Jedlovszky
,
N. N.
Medvedev
, and
R.
Vallauri
,
J. Chem. Phys.
121
,
2422
(
2004
);
[PubMed]
N.
Tokita
,
M.
Hirabayashi
,
C.
Azuma
, and
T.
Dotera
,
J. Chem. Phys.
120
,
496
(
2004
);
[PubMed]
B. P. J.
de Lacy Costello
,
P.
Hantz
, and
N. M.
Ratcliffe
,
J. Chem. Phys.
120
,
2413
(
2004
).
[PubMed]
30.
Y.
Hiwatari
,
T.
Saito
, and
A.
Ueda
,
J. Chem. Phys.
81
,
6044
(
1984
);
W.
Brostow
,
M.
Chybicki
,
R.
Laskowski
, and
J.
Rybicki
,
Phys. Rev. B
57
,
13448
(
1998
);
V. A.
Luchnikov
,
M. L.
Gavrilova
,
N. N.
Medvedev
, and
V. P.
Voloshin
,
FGCS, Future Gener. Comput. Syst.
18
,
673
(
2002
).
31.
S.
Bryant
and
M.
Blunt
,
Phys. Rev. A
46
,
2004
(
1992
);
[PubMed]
K. E.
Thompson
and
H. S.
Fogler
,
AIChE J.
43
,
1377
(
1997
).
32.
M.
Wilson
and
P. A.
Madden
,
Phys. Rev. Lett.
80
,
532
(
1998
).
33.
V. P.
Voloshin
,
S.
Beaufils
, and
N. N.
Medvedev
,
J. Mol. Liq.
96–97
,
101
(
2002
);
A. V.
Anikeenko
,
M. G.
Alinchenko
,
V. P.
Voloshin
,
N. N.
Medvedev
,
M. L.
Gavrilova
, and
P.
Jedlovszky
,
Lect. Notes Comput. Sci.
3045
,
217
(
2004
);
M. G.
Alinchenko
,
A. V.
Anikeenko
,
N. N.
Medvedev
,
V. P.
Voloshin
,
M.
Mezei
, and
P.
Jedlovszky
,
J. Phys. Chem. B
108
,
19056
(
2004
);
A. L.
Rabinovich
,
N. K.
Balabaev
,
M. G.
Alinchenko
,
V. P.
Voloshin
,
N. N.
Medvedev
, and
P.
Jedlovszky
,
J. Chem. Phys.
122
,
084906
(
2005
).
34.

Typical examples in the quantum-mechanical approach to molecular surfaces are represented by Bondi and Pauling radii.

35.
N.
Amenta
and
M.
Bern
,
Discrete Comput. Geom.
22
,
481
(
1999
);
N.
Amenta
,
S.
Choi
, and
R.
Kolluri
, Comp. Geom.
19
,
127
(
2001
).
36.

In cases where the atom-atom pair distribution functions are statistically too noisy, one might obtain these functions from a short MD simulations averaging over several configurations.

37.

We also tried to apply the alpha- and convex-hull filtering (Ref. 19). However, we obtained worse molecular cavities in all the investigated cases by these filtering processes.

38.
H.
Edelsbrunner
and
E. P.
Mücke
,
ACM Trans. Graphics
13
,
43
(
1994
).
39.
K.
Clarkson
and
P.
Shor
,
Discrete Comput. Geom.
4
,
387
(
1989
).
40.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
41.
A. A. C. C
Pais
,
A.
Sousa
,
M. E.
Eusébio
, and
J. S.
Redinha
,
Phys. Chem. Chem. Phys.
3
,
4001
(
2001
).
42.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1987
).
43.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Comput. Phys. Commun.
128
,
565
(
2000
).
44.
Handbook of Chemistry and Physics
, 80th ed., edited by
D. R.
Lide
(
CRC
, Boca Ratón, FL,
1999
).
45.
S.
Nosé
,
Mol. Phys.
51
,
255
(
1984
);
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
46.
I.
Tironi
,
R.
Sperb
,
P.
Smith
, and
W. F.
van Gusteren
,
J. Chem. Phys.
102
,
5451
(
1995
).
47.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
(
1988
);
[PubMed]
W. L.
Jorgensen
and
D. L.
Severance
,
J. Am. Chem. Soc.
112
,
4768
(
1990
);
G.
Kaminski
,
E. M.
Duffy
,
T.
Matsui
, and
W. L.
Jorgensen
,
J. Phys. Chem.
98
,
13077
(
1994
);
D. S.
Maxwell
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Comput. Chem.
16
,
984
(
1995
).
48.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN (Gaussian Inc., Pittsburgh, PA,
1998
).
50.
C. M.
Breneman
and
K. B.
Wiberg
,
J. Comput. Chem.
11
,
361
(
1990
).
51.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
52.

We have used the radius for the solvent molecule as implemented in the GAUSSIAN98REVA9 program (Ref. 49).

53.
G. D.
Hawkins
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
102
,
3257
(
1998
) (supporting material).
54.
I. R.
McDonald
,
D. G.
Bounds
, and
M. L.
Klein
,
Mol. Phys.
45
,
521
(
1982
).
55.
C.
Curutchet
,
C. J.
Cramer
,
D. G.
Truhlar
,
M. F.
Ruiz-López
,
D.
Rinaldi
,
M.
Orozco
, and
F. J.
Luque
,
J. Comput. Chem.
24
,
284
(
2003
).
56.
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
,
J. Comput. Chem.
22
,
1180
(
2001
).
57.
G. L.
Pollack
,
J. Chem. Phys.
90
,
6559
(
1989
).
You do not currently have access to this content.