Stochastic chemical kinetics more accurately describes the dynamics of “small” chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

1.
M.
Samoilov
,
S.
Plyasunov
, and
A. P.
Arkin
,
Proc. Natl. Acad. Sci. U.S.A.
U.S.A.
102
,
2310
(
2005
).
2.
E. M.
Ozbudak
,
M.
Thattai
,
I.
Kurtser
,
A. D.
Grossman
, and
A.
van Oudenaarden
,
Nat. Genet.
31
,
69
(
2002
).
3.
H.
Salis
and
Y.
Kaznessis
,
Comput. Chem. Eng.
29
,
577
(
2005
).
4.
S.
Krishna
,
B.
Banerjee
,
T. V.
Ramakrishnan
, and
G. V.
Shivashankar
,
Proc. Natl. Acad. Sci. U.S.A.
U.S.A.
102
,
4771
(
2005
).
5.
A. B.
Stundzia
and
C. J.
Lumsden
,
J. Comput. Phys.
127
,
196
(
1996
).
6.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
7.
M. A.
Gibson
and
J.
Bruck
,
J. Phys. Chem. A
104
,
1876
(
2000
).
8.
Y.
Cao
,
H.
Li
, and
L.
Petzold
,
J. Chem. Phys.
121
,
4059
(
2004
).
9.
R.
Gunawan
,
Y.
Cao
,
L.
Petzold
, and
F. J.
Doyle
 III
,
Biophys. J.
88
,
2530
(
2005
).
10.
C. G.
Moles
,
P.
Mendes
, and
J. R.
Banga
,
Genome Res.
13
,
2467
(
2003
).
11.
C. N.
Chen
,
C. I.
Chou
,
C. R.
Hwang
,
J.
Kang
,
T. K.
Lee
, and
S. P.
Li
,
Phys. Rev. E
60
,
2388
(
1999
).
12.
K. S.
Brown
and
J. P.
Sethna
,
Phys. Rev. E
68
,
021904
(
2003
).
13.
X. J.
Feng
,
S.
Hooshangi
,
D.
Chen
,
G.
Li
,
R.
Weiss
, and
H.
Rabitz
,
Biophys. J.
87
,
2195
(
2004
).
14.
A. G.
Makeev
,
D.
Maroudas
,
A. Z.
Panagiotopoulos
, and
I. G.
Kevrekidis
,
J. Chem. Phys.
117
,
8229
(
2002
).
15.
A. G.
Makeev
,
D.
Maroudas
, and
I. G.
Kevrekidis
,
J. Chem. Phys.
116
,
10083
(
2002
).
16.
D. T.
Gillespie
,
J. Chem. Phys.
115
,
1716
(
2001
).
17.
D. T.
Gillespie
and
L. R.
Petzold
,
J. Chem. Phys.
119
,
8229
(
2003
).
18.
T.
Tian
and
K.
Burrage
,
J. Chem. Phys.
121
,
10356
(
2004
).
19.
A.
Chatterjee
,
D. G.
Vlachos
, and
M. A.
Katsoulakis
,
J. Chem. Phys.
122
,
024112
(
2005
).
20.
D. T.
Gillespie
,
J. Chem. Phys.
113
,
297
(
2000
).
21.
E. L.
Haseltine
and
J. B.
Rawlings
,
J. Chem. Phys.
117
,
6959
(
2002
).
22.
J.
Puchalka
and
A. M.
Kierzek
,
Biophys. J.
86
,
1357
(
2004
).
23.
H.
Salis
and
Y.
Kaznessis
,
J. Chem. Phys.
122
,
054103
(
2005
).
24.
M.
Rathinam
,
L. R.
Petzold
,
Y.
Cao
, and
D. T.
Gillespie
,
J. Chem. Phys.
119
,
12784
(
2003
).
25.
Y.
Cao
,
L. R.
Petzold
,
M.
Rathinam
, and
D. T.
Gillespie
,
J. Chem. Phys.
121
,
12169
(
2004
).
26.
J. G.
Gaines
and
T. J.
Lyons
,
SIAM J. Appl. Math.
57
,
1455
(
1997
).
27.
P. M.
Burrage
,
R.
Herdiana
, and
K.
Burrage
,
J. Comput. Appl. Math.
171
,
317
(
2004
).
28.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer-Verlag
, Berlin,
1992
).
29.
G. N.
Milstein
,
E.
Platen
, and
H.
Schurz
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
35
,
1010
(
1998
).
30.
E.
Hausenblas
,
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
40
,
87
(
2002
).
31.
H. S.
Fogler
,
Elements of Chemical Reaction Engineering
(
Prentice-Hall
, Englewood Cliffs, NJ,
1999
).
32.
C. V.
Rao
and
A. P.
Arkin
,
J. Chem. Phys.
118
,
4999
(
2003
).
33.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
,
J. Chem. Phys.
122
,
014116
(
2005
).
34.
J.
Goutsias
,
J. Chem. Phys.
122
,
184102
(
2005
).
35.
C.
Gadgil
,
C. H.
Lee
, and
H. G.
Othmer
,
Bull. Math. Biol.
67
,
901
(
2005
).
36.
L.
Chen
,
P. G.
Debenedetti
,
C. W.
Gear
, and
I. G.
Kevrekidis
,
J. Non-Newtonian Fluid Mech.
120
,
215
(
2004
).
37.
L.
Arnold
and
B.
Schmalfuss
,
J. Diff. Eqns.
177
,
235
(
2001
).
38.
G.
Mircea
,
Stochastic Calculus: Applications in Science and Engineering
(
Birkhauser
, Boston,
2002
).
39.
T. S.
Gardner
,
C. R.
Cantor
, and
J. J.
Collins
,
Nature (London)
(London)
403
,
339
(
2000
).
40.
J. S.
van Zon
and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
128103
(
2005
).
41.
R.
Bundschuh
,
F.
Hayot
, and
C.
Jayaprakash
,
Biophys. J.
84
,
1606
(
2003
).
You do not currently have access to this content.