Transition state theory (TST) is revisited, as well as evolutions upon TST such as variational TST in which the TST dividing surface is optimized so as to minimize the rate of recrossing through this surface and methods which aim at computing dynamical corrections to the TST transition rate constant. The theory is discussed from an original viewpoint. It is shown how to compute exactly the mean frequency of transition between two predefined sets which either partition phase space (as in TST) or are taken to be well-separated metastable sets corresponding to long-lived conformation states (as necessary to obtain the actual transition rate constants between these states). Exact and approximate criterions for the optimal TST dividing surface with minimum recrossing rate are derived. Some issues about the definition and meaning of the free energy in the context of TST are also discussed. Finally precise error estimates for the numerical procedure to evaluate the transmission coefficient κS of the TST dividing surface are given, and it is shown that the relative error on κS scales as 1κS when κS is small. This implies that dynamical corrections to the TST rate constant can be computed efficiently if and only if the TST dividing surface has a transmission coefficient κS which is not too small. In particular, the TST dividing surface must be optimized upon (for otherwise κS is generally very small), but this may not be sufficient to make the procedure numerically efficient (because the optimal dividing surface has maximum κS, but this coefficient may still be very small).

1.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
2.
E.
Wigner
,
Trans. Faraday Soc.
34
,
29
(
1938
).
3.
J.
Horiuti
,
Bull. Chem. Soc. Jpn.
13
,
210
(
1938
).
4.
J. B.
Anderson
,
Adv. Chem. Phys.
91
,
381
(
1995
).
5.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
).
6.
J. E.
Straub
, in
Computational Biochemistry and Biophysics
, edited by,
O. M.
Becker
,
A. D.
MacKerell
, Jr.
,
B.
Roux
, and
M.
Watanabe
(
Marcel Decker
, New York,
2001
), p.
199
.
7.
P.
Pechukas
,
Annu. Rev. Phys. Chem.
32
,
159
(
1981
).
8.
D. G.
Truhlar
and
B. C.
Garett
,
Annu. Rev. Phys. Chem.
35
,
159
(
1984
).
9.
J. C.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
).
10.
T.
Yamamoto
,
J. Chem. Phys.
33
,
281
(
1960
).
11.
C. H.
Bennett
, in
Algorithms for Chemical Computation
,
ACS Symposium Series
Vol.
46
, edited by
A. S.
Nowick
and
J. J.
Burton
(Washington, DC,
1977
), p.
63
.
12.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
13.
F.
Tal
and
E.
Vanden-Eijnden
,
Nonlinearity
(submitted).
14.
W.
Huisinga
,
S.
Meyn
, and
Ch.
Schütte
,
Ann. Appl. Probab.
14
,
419
(
2004
).
15.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
16.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithm to Applications
, 2nd ed. (
Elsevier
, New York,
2001
).
17.
S. H.
Northrup
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2700
(
1980
).
18.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
19.
G. H.
Jóhannesson
and
H.
Jónsson
,
J. Chem. Phys.
115
,
9644
(
2001
).
20.

It seems that the origin of the error in Ref. 19 is related to the misconception about the free energy that we discuss in Sec. V (see also Ref. 21).

21.
G.
Ciccotti
,
R.
Kapral
, and
E.
Vanden-Eijnden
,
ChemPhysChem
6
,
1809
(
2005
).
22.
G. K.
Schenter
,
B. C.
Garrett
, and
D. G.
Truhlar
,
J. Chem. Phys.
119
,
5828
(
2003
).
23.
T. S.
van Erp
and
P. G.
Bolhuis
,
J. Comput. Phys.
205
,
157
(
2005
).
24.
(56) use the strong Markov property and the fact that τaS+(x,v) and τab(x,v) are stopping times for an introduction to these concepts see, e.g.,
R.
Durrett
,
Stochastic Calculus
(
CRC
, Boea, Raton, Fl,
1996
).
25.
M. J.
Ruiz-Montero
,
D.
Frenkel
, and
J. J.
Brey
,
Mol. Phys.
90
,
925
(
1997
).
26.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
,
Adv. Chem. Phys.
123
,
1
(
2002
).
27.
W. E.W.
Ren
and
E.
Vanden-Eijnden
,
J. Phys. Chem. B
109
,
6688
(
2005
).
You do not currently have access to this content.