We studied the homogeneous nucleation kinetics of an aqueous suspension of charged colloidal spheres under de-ionized conditions. Samples of equilibrium crystalline structure were shear molten and the metastable melt left to solidify after cessation of shear. At low particle number densities n, corresponding to low metastability of the melt, nucleation was monitored directly via video microscopy. We determined the nucleation rates Γ(t) by counting the number of newly appearing crystals in the observation volume per unit time. Using a suitable discrete adaptation of Avrami's [J. Chem. Phys.7, 1003 (1939); J. Chem. Phys.8, 212 (1940); J. Chem. Phys.9, 177 (1941)] model for solidification via homogeneous nucleation and subsequent growth, we calculate the remaining free volume VF(t) to obtain the rate densities J(t)=Γ(t)VF(t). We observe J(t) to rise steeply, display a plateau at a maximum rate density Jmax, and to decrease again. With increased n the plateau duration shrinks while Jmax increases. At low to moderate number densities fully solidified samples were analyzed by microscopy to obtain the grain-size distribution and the average crystallite size L. Under the assumption of stationarity, we obtained the nucleation rate density JAvr, which increased strongly with increasing n. Interestingly, JAvr agrees quantitatively to Jmax and to JAvr as obtained previously from scattering data taken on the same sample at large n. Thus, by combination of different methods, reliable nucleation rate densities are now available over roughly one order of magnitude in n and eight orders of magnitude in J.

1.
W.
Luck
,
M.
Klier
, and
H.
Wesslau
,
Ber. Bunsenges. Phys. Chem.
67
,
75
(
1963
);
W.
Luck
,
M.
Klier
, and
H.
Wesslau
,
Ber. Bunsenges. Phys. Chem.
67
,
84
(
1963
).
2.
P.
Pieranski
and
B.
Pansu
,
J. Phys. (France)
46
,
281
(
1985
).
3.
A. K.
Sood
,
Solid State Phys.
45
,
1
(
1991
).
4.
P. N.
Pusey
and
W.
van Megen
,
Nature (London)
320
,
340
(
1989
).
5.
P.
Bartlett
and
W.
van Megen
,
Granular Matter
, edited by
A.
Mehta
(
Springer
, New York,
1994
), pp.
195
257
.
6.
W.
van Megen
,
Transp. Theory Stat. Phys.
24
,
1017
(
1995
).
7.
P. M.
Chaikin
,
J. M.
diMeglio
,
W.
Dozier
,
H. M.
Lindsay
, and
D. A.
Weitz
, in
Physics of Complex and Supramolecular Fluids
, edited by
S. A.
Safran
and
N. A.
Clark
(
Wiley-Interscience
, New York
1987
), p.
65
.
8.
P.
Wette
,
H. J.
Schöpe
, and
T.
Palberg
,
J. Chem. Phys.
116
,
10981
(
2002
).
10.
T.
Palberg
,
J. Phys.: Condens. Matter
11
,
R323
(
1999
).
11.
A. C.
Zettelmoyer
,
Nucleation
(
Marcel Dekker
, New York,
1969
), p.
279
.
12.
K. F.
Kelton
,
Solid State Phys.
45
,
75
(
1993
).
13.
D. M.
Herlach
,
R. F.
Cochrane
,
I.
Egry
,
H. J.
Fecht
, and
A. L.
Greer
,
Int. Mater. Rev.
38
,
273
(
1993
).
14.
D. J.W.
Aastuen
,
N. A.
Clark
,
L. K.
Kotter
, and
B. J.
Ackerson
,
Phys. Rev. Lett.
57
,
1733
(
1986
);
[PubMed]
D. J.W.
Aastuen
,
N. A.
Clark
,
L. K.
Kotter
, and
B. J.
Ackerson
,
Phys. Rev. Lett.
57
,
2772
(E) (
1986
).
15.
D. J.W.
Aastuen
,
N. A.
Clark
,
J. C.
Swindal
, and
C. D.
Muzny
,
Phase Transitions
21
,
139
(
1990
).
16.
W.
Härtl
,
R.
Klemp
, and
H.
Versmold
,
Phase Transitions
21
,
299
(
1990
).
17.
J. K.G.
Dhont
,
C.
Smits
, and
H. N.W.
Lekkerkerker
,
J. Colloid Interface Sci.
152
,
386
(
1992
).
18.
M.
Würth
,
J.
Schwarz
,
F.
Culis
,
P.
Leiderer
, and
T.
Palberg
,
Phys. Rev. E
52
,
6415
(
1995
).
19.
A.
Heymann
,
A.
Stipp
, and
K.
Schätzel
,
Nuovo Cimento Soc. Ital. Fis., D
16D
,
1149
(
1995
).
20.
B. J.
Ackerson
and
K.
Schätzel
,
Phys. Rev. E
52
,
6448
(
1995
).
21.
J. L.
Harland
and
W.
van Megen
,
Phys. Rev. E
55
,
3054
(
1996
).
22.
A.
van Blaaderen
,
R.
Ruel
, and
P.
Wiltzius
,
Nature (London)
385
,
321
(
1997
).
23.
C. T.
Lant
,
A. E.
Smart
,
D. S.
Cannell
,
W. V.
Meyer
, and
M. P.
Doherty
,
Appl. Opt.
36
,
7501
(
1997
).
24.
A.
Stipp
,
A.
Heymann
,
Chr.
Sinn
, and
T.
Palberg
,
Prog. Colloid Polym. Sci.
118
,
266
(
2001
).
25.
M. S.
Elliot
,
M. D.
Haddon
, and
W. C.K.
Poon
,
J. Phys.: Condens. Matter
13
,
L553
(
2001
).
26.
M. D.
Elliot
and
W. C.K.
Poon
,
Adv. Colloid Interface Sci.
92
,
133
(
2001
).
27.
P. S.
Francis
,
S.
Martin
,
G.
Bryant
,
W.
van Megen
, and
P. A.
Wilksch
,
Rev. Sci. Instrum.
73
,
3878
(
2002
).
28.
A.
Stipp
,
R.
Biehl
,
Th.
Preis
,
J.
Liu
,
A.
Barreira Fontecha
,
H. J.
Schöpe
, and
T.
Palberg
,
J. Phys.: Condens. Matter
16
,
S3885
(
2004
).
29.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
30.
M. S.
Ripoll
,
C. F.
Tejero
, and
M.
Baus
,
Physica A
234
,
311
(
1996
).
31.
S.
Derber
,
T.
Palberg
,
K.
Schätzel
, and
J.
Vogel
,
Physica A
235
,
204
(
1997
).
32.
J. D.
Gunton
,
J. Stat. Phys.
95
,
903
(
1999
).
33.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
34.
S.
Auer
and
D.
Frenkel
,
Nature (London)
413
,
711
(
2001
).
35.
N. M.
Dixit
and
C. F.
Zukoski
,
Phys. Rev. E
64
,
041604
(
2001
);
N. M.
Dixit
and
C. F.
Zukoski
,
Phys. Rev. E
66
,
051602
(
2001
).
36.
S.
Auer
and
D.
Frenkel
,
J. Phys.: Condens. Matter
14
,
7667
(
2002
).
37.
B.
O’Malley
and
I.
Snook
,
Phys. Rev. Lett.
90
,
085702
(
2003
).
38.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
,
Nature (London)
428
,
404
(
2004
).
39.
R.
Blaak
,
S.
Auer
,
D.
Frenkel
, and
H.
Löwen
,
J. Phys.: Condens. Matter
16
,
S3873
(
2004
).
40.
V. J.
Anderson
and
H. N.W.
Lekkerkerker
,
Nature (London)
416
,
811
(
2002
).
41.
A.
Yethiraj
and
A. v.
Blaaderen
,
Nature (London)
421
,
513
(
2003
).
42.
S.
Tang
,
Z.
Hu
,
Z.
Cheng
, and
J.
Wu
,
Langmuir
20
,
8858
(
2004
).
43.
A. N.
Kolmogorov
,
Izv. Akad. NaukSSSR, Ser. Mat.
1
,
355
(
1937
).
44.
W. A.
Johnson
and
R. F.
Mehl
,
Trans. Am. Inst. Min., Metall. Pet. Eng.
135
,
416
(
1939
).
45.
M.
Avrami
,
J. Chem. Phys.
7
,
1003
(
1939
);
M.
Avrami
,
J. Chem. Phys.
9
,
177
(
1941
).
46.
Cited by
G. S.
Zhadanov
,
Crystal Physics
, edited by
A. F.
Brown
(
Academic
, New York,
1965
).
47.
C. DeW.
Van Siclen
,
Phys. Rev. B
54
,
011856
(
1996
).
48.
H. J.
Schöpe
and
T.
Palberg
,
J. Phys.: Condens. Matter
14
,
11573
(
2002
).
49.
H. J.
Schöpe
and
T.
Palberg
,
J. Non-Cryst. Solids
307–310
,
613
(
2002
).
50.
P.
Wette
,
H. J.
Schöpe
,
J.
Liu
, and
T.
Palberg
,
Europhys. Lett.
64
,
124
(
2003
).
51.
P.
Wette
,
H. J.
Schöpe
,
J.
Liu
, and
T.
Palberg
,
Prog. Colloid Polym. Sci.
123
,
264
(
2004
).
52.
P.
Wette
,
H. J.
Schöpe
, and
T.
Palberg
,
J. Chem. Phys.
122
,
144901
(
2005
).
53.
P.
Wette
and
H. J.
Schöpe
,
J. Chem. Phys.
(submitted).
54.
Y.
He
,
B.
Olivier
, and
B. J.
Ackerson
,
Langmuir
13
,
1408
(
1997
).
55.
U.
Gasser
,
E.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
56.
M.
Evers
,
N.
Garbow
,
D.
Hessinger
, and
T.
Palberg
,
Phys. Rev. E
57
,
6774
(
1998
).
57.
P.
Wette
,
H.-J.
Schöpe
,
R.
Biehl
, and
T.
Palberg
,
J. Chem. Phys.
114
,
7556
(
2001
).
58.
M. R.
Maaroufi
,
A.
Stipp
,
T.
Preis
, and
T.
Palberg
,
Sci. Tech. Information CDR
5
,
35
(
2001
).
59.
Y.
Monovoukas
,
G. G.
Fuller
, and
A. P.
Gast
,
J. Chem. Phys.
93
,
8294
(
1993
).
60.
G.
Pan
,
A. K.
Sood
, and
S. A.
Asher
,
J. Appl. Phys.
84
,
83
(
1998
).
61.
J.
Liu
(private communication).
62.
J.
Liu
,
H. J.
Schöpe
, and
T.
Palberg
,
J. Chem. Phys.
116
,
5901
(
2001
).
63.
T.
Palberg
,
W.
Mönch
,
J.
Schwarz
, and
P.
Leiderer
,
J. Chem. Phys.
102
,
5082
(
1995
).
64.
M.
Ishikawa
and
T.
Okubo
,
J. Cryst. Growth
233
,
408
(
2001
).
65.
J. Q.
Broughton
,
G. H.
Gillmer
, and
K. A.
Jackson
,
Phys. Rev. Lett.
49
,
1496
(
1992
).
66.
A.
Heymann
,
Chr.
Sinn
, and
T.
Palberg
,
Phys. Rev. E
62
,
813
(
2000
).
67.
E. N.
Gilbert
,
Ann. Math. Stat.
33
,
958
(
1962
).
You do not currently have access to this content.