Ar2+ ions produced in a cooled supersonic expansion by electron-impact ionization are accelerated at 2.5 keV and kept during few milliseconds inside a linear electrostatic trap. The lifetime of the metastable Ar2+ ion is determined from the measurement of the rate of the argon atoms escaping the trap. The lifetime and the relative metastable populations are measured as a function of the pressure and temperature in the supersonic expansion, i.e., of the mean cluster size. Possible mechanisms responsible for the metastable formation are discussed.

1.
J. J.
Erwing
,
IEEE J. Sel. Top. Quantum Electron.
6
,
1051
(
2000
).
2.
S.
Stephan
,
A.
Stamatovic
, and
T. D.
Märk
,
Phys. Rev. A
28
,
3105
(
1983
).
3.
S.
Stephan
and
T. D.
Märk
,
Phys. Rev. A
32
,
1447
(
1985
).
4.
B. J.
Whitaker
,
C. A.
Woodward
,
P. J.
Knowles
, and
A. J.
Stace
,
J. Chem. Phys.
93
,
376
(
1990
).
5.
A. J.
Stace
,
C. A.
Woodward
, and
B. J.
Whitaker
,
Chem. Phys. Lett.
184
,
113
(
1991
).
6.
J.
Fedor
,
R.
Parajuli
,
S.
Matt-Leubner
,
O.
Echt
,
F.
Hagelberg
,
K.
Gluch
,
A.
Stamatovic
,
M.
Probst
,
P.
Scheir
, and
T. D.
Märk
,
Phys. Rev. Lett.
91
,
133401
(
2003
).
7.
J.
Fedor
,
K.
Gluch
,
R.
Parajuli
,
S.
Matt-Leubner
,
O.
Echt
,
P.
Scheir
, and
T. D.
Märk
,
J. Chem. Phys.
121
,
7253
(
2004
).
8.
M.
Sizun
(private communication).
9.
S.
Matt-Leubner
,
J.
Fedor
,
R.
Parajuli
,
A.
Stamatovic
,
O.
Echt
,
F.
Hagelberg
,
K.
Gluch
,
M.
Probst
,
P.
Scheir
, and
T. D.
Märk
,
Phys. Chem. Chem. Phys.
7
,
1043
(
2005
).
10.
K.
Norwood
,
J. H.
Guo
, and
C. Y.
Ng
,
J. Chem. Phys.
90
,
2995
(
1989
).
11.
H.
Yoshii
,
T.
Hayaishi
,
T.
Onuma
,
T.
Aoto
,
Y.
Morioka
, and
K.
Ito
,
J. Chem. Phys.
117
,
1517
(
2002
).
13.
M.
Grigonov
and
F.
Spiegelmann
,
Surf. Rev. Lett.
3
,
211
(
1996
).
14.
D.
Hrivnak
and
R.
Kalus
,
Chem. Phys.
264
,
319
(
2001
).
15.
R.
Karnbach
,
M.
Josppien
,
J.
Stapefeldt
,
J.
Wörmer
, and
T.
Möller
,
Rev. Sci. Instrum.
64
,
2838
(
1993
).
16.
Y. H.
Chiu
,
S.
Pullins
,
D. J.
Levandier
, and
R. A.
Dressler
,
J. Chem. Phys.
112
,
10880
(
2000
).
17.
R.
Wester
,
K. G.
Bhusham
,
N.
Altstein
,
D.
Zajfman
,
O.
Heber
, and
M. L.
Rappaport
,
J. Chem. Phys.
110
,
11830
(
1999
).
18.
H. B.
Pedersen
,
D.
Stasser
,
S.
Ring
,
O.
Heber
,
M. L.
Rappaport
,
Y.
Rudich
,
I.
Sagi
, and
D.
Zajfman
,
Phys. Rev. Lett.
87
,
055001
(
2001
).
19.
H. B.
Pedersen
,
D.
Stasser
,
O.
Heber
,
M. L.
Rappaport
, and
D.
Zajfman
,
Phys. Rev. A
65
,
042703
(
2002
).
20.
H. B.
Pedersen
,
D.
Stasser
,
B.
Amarant
,
O.
Heber
,
M. L.
Rappaport
, and
D.
Zajfman
,
Phys. Rev. A
65
,
042704
(
2002
).
21.
D.
Attia
,
D.
Stasser
,
O.
Heber
,
M. L.
Rappaport
, and
D.
Zajfman
(unpublished).
22.
L. H.
Andersen
,
O.
Heber
, and
D.
Zajfman
,
J. Phys. B
37
,
R57
(
2004
).
23.
U.
Buck
and
R.
Krohne
,
J. Chem. Phys.
105
,
5408
(
1996
).
25.
O. F.
Hagena
,
Z. Phys. D: At., Mol. Clusters
4
,
291
(
1987
).
26.
H. P.
Godfried
and
I. F.
Silvera
,
Phys. Rev. A
27
,
3008
(
1982
).
27.
W. R.
Wadt
,
J. Chem. Phys.
68
,
402
(
1978
).
28.
A.
Wüest
and
F.
Merkt
,
J. Chem. Phys.
120
,
638
(
2004
).
29.
F. X.
Gadea
and
I.
Paidarová
,
Chem. Phys.
109
,
281
(
1996
).
30.
A. V.
Malakhovskii
,
Chem. Phys.
270
,
471
(
2001
).
You do not currently have access to this content.