This work assesses the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional for the prediction of lattice constants and band gaps using a set of 40 simple and binary semiconductors. An extensive analysis of both basis set and relativistic effects is given. Results are compared with established pure density functionals. For lattice constants, HSE outperforms local spin-density approximation (LSDA) with a mean absolute error (MAE) of 0.037 Å for HSE vs 0.047 Å for LSDA. For this specific test set, all pure functionals tested produce MAEs for band gaps of 1.0–1.3 eV, consistent with the very well-known fact that pure functionals severely underestimate this property. On the other hand, HSE yields a MAE smaller than 0.3 eV. Importantly, HSE correctly predicts semiconducting behavior in systems where pure functionals erroneously predict a metal, such as, for instance, Ge. The short-range nature of the exchange integrals involved in HSE calculations makes their computation notably faster than regular hybrid functionals. The current results, paired with earlier work, suggest that HSE is a fast and accurate alternative to established density functionals, especially for solid state calculations.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
J. P.
Perdew
,
Int. J. Quantum Chem.
30
,
451
(
1986
).
3.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
4.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
5.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
6.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
7.
G.
Baraff
and
M.
Schlüter
,
Phys. Rev. B
30
,
3460
(
1984
).
8.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
9.
V. I.
Anisimov
,
I. V.
Solovyev
,
M. A.
Korotin
,
M. T.
Czyzyk
, and
G. A.
Sawatzky
,
Phys. Rev. B
48
,
16929
(
1993
).
10.
A. I.
Lichtenstein
,
J.
Zaanen
, and
V. I.
Anisimov
,
Phys. Rev. B
52
,
R5467
(
1995
).
11.
W. G.
Aulbur
,
L.
Jonsson
, and
J. W.
Wilkins
,
Solid State Phys.
54
,
1
(
2000
).
12.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
13.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
14.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
7274
(
2004
).
15.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College
, Orlando, Florida,
1976
), p.
335
.
16.
W.
Kohn
,
Int. J. Quantum Chem.
56
,
229
(
1995
).
17.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
18.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
1187
(
2004
).
19.
D.
Pines
,
Elementary Excitations in Solids
(
Perseus Books
, Reading, Massachusetts,
1999
).
20.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M.W.
Gill
,
Chem. Phys. Lett.
254
,
329
(
1996
).
21.
P. M.W.
Gill
,
R. D.
Adamson
, and
J. A.
Pople
,
Mol. Phys.
88
,
1005
(
1996
).
22.
A.
Savin
,
Recent Developments and Applications of Modern Density Functional Theory
(
Elsevier Science
, New York,
1996
), pp.
327
357
.
23.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
24.
A.
Seidl
,
A.
Görling
,
P.
Vogl
, and
J. A.
Majewski
,
Phys. Rev. B
53
,
3764
(
1996
).
25.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
26.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
27.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
28.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
29.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
30.
O.
Vydrov
,
J.
Heyd
, and
G. E.
Scuseria
(unpublished).
31.
I. D.
Prodan
,
G. E.
Scuseria
,
J. A.
Sordo
,
K. N.
Kudin
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
014703
(
2005
).
32.
I. D.
Prodan
,
G. E.
Scuseria
, and
R. L.
Martin
(unpublished).
33.
J.
Uddin
,
J. E.
Peralta
, and
G. E.
Scuseria
,
Phys. Rev. B
71
,
155112
(
2005
).
34.
J.
Uddin
and
G. E.
Scuseria
,
Phys. Rev. B
72
,
035101
(
2005
).
35.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
36.
D. M.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
41
,
7868
(
1990
).
37.
See EPAPS https://www.scitation.org/doi/suppl/10.1063/1.2085170 for our detailed results for experimental and optimized structures, as well as calculated bandgaps and basis sets used. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
38.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al.,
Gaussian Development Version, Revision C.01
(
Gaussian
, Inc., Pittsburgh PA,
2004
).
39.
K. N.
Kudin
and
G. E.
Scuseria
,
Phys. Rev. B
61
,
16440
(
2000
).
40.
J. C.
Burant
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
105
,
8969
(
1996
).
41.
M. C.
Strain
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Science
271
,
51
(
1996
).
42.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
43.
44.
45.
J. E.
Peralta
,
J.
Uddin
, and
G. E.
Scuseria
,
J. Chem. Phys.
122
,
084108
(
2005
).
46.
G. L.
Malli
,
A. B.F.
Da Silva
, and
Y.
Ishikawa
,
Phys. Rev. A
47
,
143
(
1993
).
47.
B.
Metz
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
113
,
2563
(
2000
).
48.
O.
Madelung
,
Semiconductors-Basic Data
2nd ed. (
Springer
, New York,
1996
).
49.
B.
Rafferty
and
L. M.
Brown
,
Phys. Rev. B
58
,
10326
(
1998
).
50.
R. M.
Wentzcovitch
and
M. L.
Cohen
,
J. Phys. C
19
,
6791
(
1986
).
51.
Q.
Guo
and
A.
Yoshida
,
Jpn. J. Appl. Phys., Part 1
33
,
2453
(
1994
).
52.
53.
X.
Zhu
and
S. G.
Louie
,
Phys. Rev. B
43
,
14142
(
1991
).
54.
55.
G.
Ramírez-Flores
,
H.
Navarro-Contreras
, and
A.
Lastras-Martínez
,
Phys. Rev. B
50
,
8433
(
1994
).
56.
M.
Levinshtein
,
S.
Rumyantsev
, and
M.
Shur
,
Semiconductor Parameters
(
World Scientific
, Singapore,
1996
).
57.
B.
Arnaudov
,
T.
Paskova
,
P. P.
Paskov
,
B.
Magnusson
,
E.
Valcheva
,
B.
Monemar
,
H.
Lu
,
W. J.
Schaff
,
H.
Amano
, and
I.
Akasaki
,
Phys. Rev. B
69
,
115216
(
2004
).
58.
O.
Zakharov
,
A.
Rubio
,
X.
Blase
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
50
,
10780
(
1994
).
59.
U.
Lunz
,
C.
Schumacher
,
J.
Nürnberger
,
K.
Schüll
,
A.
Gerhard
,
U.
Schüssler
,
B.
Jobst
,
W.
Faschinger
, and
G.
Landwehr
,
Semicond. Sci. Technol.
12
,
970
(
1997
).
60.
W.
Walukievicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
 III
,
E. E.
Haller
,
I.
Miotkowski
,
M. J.
Seong
,
H.
Alawadhi
, and
A. K.
Ramdas
,
Phys. Rev. Lett.
85
,
1552
(
2000
).
61.
D.
Wolverson
,
D. M.
Bird
,
C.
Bradford
,
K. A.
Prior
, and
B. C.
Cavenett
,
Phys. Rev. B
64
,
113203
(
2001
).
62.
D.
Rached
,
N.
Benkhettou
,
B.
Soudini
,
B.
Abbar
,
N.
Sekkal
, and
M.
Driz
,
Phys. Status Solidi B
240
,
565
(
2003
).
63.
J. M.
Hartmann
,
J.
Cibert
,
F.
Kany
,
H.
Mariette
,
M.
Charleux
,
P.
Alleysson
,
R.
Langer
, and
G.
Feuillet
,
J. Appl. Phys.
80
,
6257
(
1996
).
64.
H.
Luo
,
R. G.
Greene
,
K.
Ghandehari
,
T.
Li
, and
A. L.
Ruoff
,
Phys. Rev. B
50
,
16232
(
1994
).
65.
H.
Luo
,
R. G.
Greene
, and
A. L.
Ruoff
,
Phys. Rev. B
49
,
15341
(
1994
).
66.
H. G.
Zimmer
,
H.
Winzen
, and
K.
Syassen
,
Phys. Rev. B
32
,
4066
(
1985
).
67.
G.
Kalpana
,
B.
Palanivel
, and
M.
Rajagopalan
,
Phys. Rev. B
50
,
12318
(
1994
).
68.
R. J.
Zollweg
,
Phys. Rev.
111
,
113
(
1958
).

Supplementary Material

You do not currently have access to this content.