We present a method for directly locating density-driven phase transitions in multicomponent systems. Phase coexistence conditions are determined through manipulation of a total density probability distribution evaluated over a density range that includes both coexisting phases. Saturation quantities are determined through appropriate averaging of density-dependent mean values of a given property of interest. We discuss how to implement the method in both the grand-canonical and isothermal-isobaric semigrand ensembles. Calculations can be conducted using any of the recently introduced flat-histogram techniques. Here, we combine the general algorithm with a transition-matrix approach to produce an efficient self-adaptive technique for determining multicomponent phase equilibrium properties. To assess the performance of the new method, we generate phase diagrams for a number of binary and ternary Lennard-Jones mixtures.

1.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
2.
G. R.
Smith
and
A. D.
Bruce
,
J. Phys. A
28
,
6623
(
1995
).
3.
J. S.
Wang
,
T. K.
Tay
, and
R. H.
Swendsen
,
Phys. Rev. Lett.
82
,
476
(
1999
).
4.
J. S.
Wang
and
R. H.
Swendsen
,
J. Stat. Phys.
106
,
245
(
2002
).
5.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
,
Europhys. Lett.
46
,
282
(
1999
).
6.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
,
J. Stat. Phys.
98
,
321
(
2000
).
7.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
8.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
9.
Q. L.
Yan
and
J. J.
de Pablo
,
Phys. Rev. Lett.
90
,
035701
(
2003
).
10.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
119
,
9406
(
2003
).
11.
A. D.
Bruce
and
N. B.
Wilding
,
Adv. Chem. Phys.
127
,
1
(
2003
).
12.
J. R.
Errington
,
Phys. Rev. E
67
,
012102
(
2003
).
13.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
14.
J. R.
Errington
,
J. Chem. Phys.
120
,
3130
(
2004
).
15.
J. R.
Errington
,
Langmuir
20
,
3798
(
2004
).
16.
V. K.
Shen
and
J. R.
Errington
,
J. Phys. Chem. B
108
,
19595
(
2004
).
17.
V. K.
Shen
and
J. R.
Errington
,
J. Chem. Phys.
122
,
064508
(
2005
).
18.
E. C.
Cichowski
,
T. R.
Schmidt
, and
J. R.
Errington
,
Fluid Phase Equilib.
236
,
58
(
2005
).
19.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
20.
Q. L.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8745
(
2002
).
21.
F. A.
Escobedo
and
M. K.
Fenwick
,
J. Chem. Phys.
120
,
3066
(
2004
).
22.
I. D.
Gospodinov
and
F. A.
Escobedo
,
J. Chem. Phys.
122
,
164103
(
2005
).
23.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
24.
D. A.
Kofke
and
E. D.
Glandt
,
J. Chem. Phys.
87
,
4881
(
1987
).
25.
D. A.
Kofke
and
E. D.
Glandt
,
Mol. Phys.
64
,
1105
(
1988
).
26.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
27.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
28.
D. S.
Corti
,
Mol. Phys.
100
,
1887
(
2002
).
29.
D. S.
Corti
,
Phys. Rev. E
64
,
016128
(
2001
).
30.
D. S.
Corti
and
G.
Soto-Campos
,
J. Chem. Phys.
108
,
7959
(
1998
).
31.
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
441
(
1924
);
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
463
(
1924
).
32.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1987
).
33.
A. Z.
Panagiotopoulos
,
Int. J. Thermophys.
10
,
447
(
1989
).
34.
M. E.
van Leeuwen
,
C. J.
Peters
,
J.
de Swaan Arons
, and
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
66
,
57
(
1991
).
35.
V. I.
Harismiadis
,
N. K.
Koutras
,
D. P.
Tassios
, and
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
65
,
1
(
1991
).
36.
S. P.
Pandit
and
D. A.
Kofke
,
AIChE J.
45
,
2237
(
1999
).
37.
P. C.
Tsang
,
O. N.
White
,
B. Y.
Perigard
,
L. F.
Vega
, and
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
107
,
31
(
1995
).
38.
J.
Vorholz
,
V. I.
Harismiadis
, and
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
129
,
311
(
1997
).
39.
K.
Binder
,
Phys. Rev. A
25
,
1699
(
1982
).
You do not currently have access to this content.