IR emission from NO2 cooled in a supersonic jet and excited to a single, B̃B12 state rovibronic level at 22994.92cm1 above the ground-state zero point was detected with 108-s time resolution. The IR emission together with the laser-induced fluorescence decay measurement allows the deduction of the relaxation dynamics near the dissociation of NO2. Following the excitation this single rovibronic B̃B12 level decays on 1.0-s time scale primarily through electronic radiation. Collisions induce internal conversion with a rate constant of 3.0×107Torr1s1 to the mixed ÃX̃ states. Collisions further induce internal conversion of the ÃX̃ mixed states into highly vibrationally excited levels in the X̃ states with a rate constant at least one order of magnitude slower. This mechanism results in the observation of a double-exponential decay in the laser-induced fluorescence and a rise in the IR emission intensity corresponding to the fast decay in the fluorescence intensity. The IR emission rate of the highly vibrationally excited X̃-state levels is estimated to be about one order of magnitude larger than the isoenergetic ÃX̃ mixed states and much larger than the B̃B12 level, both with much less vibrational excitation.

1.
S. H. P.
Bly
,
D.
Brandt
, and
J. C.
Polanyi
,
Chem. Phys. Lett.
65
,
399
(
1979
).
2.
J. G.
Moehlman
and
J. D.
McDonald
,
J. Chem. Phys.
59
,
6683
(
1973
).
3.
M. G.
Moss
,
M. D.
Ensminger
, and
J. D.
McDonald
,
J. Chem. Phys.
74
,
6631
(
1981
).
4.
M.
Bahou
and
Y.-P.
Lee
,
Aust. J. Chem.
57
,
1161
(
2004
).
5.
L.
Letendre
and
H.-L.
Dai
,
J. Phys. Chem. A
106
,
12035
(
2002
).
6.
S. A.
Rogers
and
S. R.
Leone
,
Appl. Spectrosc.
47
,
1430
(
1993
).
7.
G. V.
Hartland
,
D.
Qin
,
H.-L.
Dai
, and
C.
Chen
,
J. Chem. Phys.
107
,
2890
(
1997
).
8.
M.
Hippler
and
M.
Quack
,
Chem. Phys. Lett.
231
,
75
(
1994
).
9.
H.
Horiguchi
and
S.
Tsuchiya
,
J. Chem. Phys.
70
,
762
(
1979
).
10.
A. M.
Renlund
,
F.
Shokoohi
,
H.
Reisler
, and
C.
Wittig
,
Chem. Phys. Lett.
84
,
293
(
1981
).
11.
A. M.
Renlund
,
F.
Shokoohi
,
H.
Reisler
, and
C.
Wittig
,
J. Phys. Chem.
86
,
4165
(
1982
).
12.
P. J.
Brucat
and
R. N.
Zare
,
J. Chem. Phys.
81
,
2562
(
1984
).
13.
D. K.
Hsu
,
D. L.
Monts
, and
R. N.
Zare
,
Spectral Atlas of Nitrogen Dioxide
(
Academic
, New York,
1978
).
14.
V. M.
Donnelly
and
F.
Kaufman
,
J. Chem. Phys.
66
,
4100
(
1977
).
15.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
65
,
2941
(
1976
).
16.
P. B.
Sackett
and
J. T.
Yardley
,
Chem. Phys. Lett.
9
,
612
(
1971
).
17.
C. G.
Stevens
,
M. W.
Swagel
,
R.
Wallace
, and
R. N.
Zare
,
Chem. Phys. Lett.
18
,
465
(
1973
).
18.
F.
Paech
,
R.
Schmiedl
, and
W.
Demtroeder
,
J. Chem. Phys.
63
,
4369
(
1975
).
19.
P.
Avouris
,
W. M.
Gelbart
, and
M. A.
El-Sayed
,
Chem. Rev. (Washington, D.C.)
77
,
793
(
1977
).
20.
V.
Sivakumaran
,
K. P.
Subramanian
, and
V.
Kumar
,
J. Quant. Spectrosc. Radiat. Transf.
69
,
519
(
2001
).
21.
A.
Delon
,
R.
Georges
, and
R.
Jost
,
J. Chem. Phys.
103
,
7740
(
1995
).
22.
A.
Delon
and
R.
Jost
,
J. Chem. Phys.
110
,
4300
(
1999
).
23.
D.
Luckhaus
and
M.
Quack
,
Chem. Phys. Lett.
190
,
581
(
1992
).
24.
Kolmar Technologies.
25.
H. L.
Welsh
,
E. J.
Stansbury
,
J.
Romanko
, and
T.
Feldman
,
J. Opt. Soc. Am.
45
,
338
(
1955
).
26.
P. P.
Wegener
,
Molecular Beams and Low-Density Gas Dynamics
, Gas Dynamics, Vol.
4
(
Marcel Dekker
, New York,
1974
).
27.
B.
Xue
,
J.
Han
, and
H.-L.
Dai
,
Phys. Rev. Lett.
84
,
2606
(
2000
).
28.
N.
Sugimoto
,
S.
Takezawa
, and
N.
Takeuchi
,
J. Mol. Spectrosc.
102
,
372
(
1983
).
You do not currently have access to this content.