The thermodynamic and kinetic behaviors for solid superheating and liquid supercooling were critically examined and compared via molecular-dynamics simulations. It is shown that the large elastic energy associated with internal melting and solid-liquid interface disorder play important roles in superheating. The growth rate is anisotropic for supercooling, but isotropic for superheating. Supercooling can be well described by the classical nucleation theory, whereas superheating shows many exceptions. The underlying mechanisms for these differences are discussed.

1.
R. W.
Cahn
,
Nature (London)
323
,
668
(
1986
).
2.
J. W.
Herman
and
H. E.
Elsayed-Ali
,
Phys. Rev. Lett.
69
,
1228
(
1992
).
3.
J.
Daeges
,
H.
Gleiter
, and
J. H.
Perepezko
,
Phys. Lett. A
119
,
79
(
1986
).
4.
M.
Born
,
J. Chem. Phys.
7
,
591
(
1939
).
5.
F. A.
Lindemann
,
Physik. Zeitschr.
11
,
609
(
1910
).
6.
H. J.
Fecht
and
W. L.
Johnson
,
Nature (London)
334
,
50
(
1988
).
7.
J. L.
Tallon
,
Nature (London)
342
,
658
(
1989
).
8.
S. N.
Luo
,
T. J.
Ahrens
,
T.
Çaign
,
A.
Strachan
,
W. A.
Goddard
 III
, and
D. C.
Swift
,
Phys. Rev. B
68
,
134206
(
2003
).
9.
S. N.
Luo
,
A.
Strachan
, and
D. C.
Swift
,
J. Chem. Phys.
120
,
11640
(
2004
).
10.
B.
Rethfeld
,
K.
Sokolowski-Tinten
,
D.
von der Linde
, and
S. I.
Anisimov
,
Phys. Rev. B
65
,
092103
(
2002
).
11.
S.
Williamson
,
G.
Mourou
, and
J. C. M.
Li
,
Phys. Rev. Lett.
52
,
2364
(
1984
).
12.
V. I.
Motorin
and
S. L.
Musher
,
J. Chem. Phys.
81
,
465
(
1984
).
13.
D.
Turnbull
and
R. E.
Cech
,
J. Appl. Phys.
21
,
804
(
1950
).
14.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
15.
S.-T.
Yau
and
P. G.
Vekilov
,
Nature (London)
406
,
494
(
2000
).
16.
X. M.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
17.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
); A symmetrized MD shape matrix is used in our work.
18.
S.
Nose
,
Mol. Phys.
52
,
255
(
1984
).
19.
J. Q.
Broughton
and
G. H.
Glimer
,
J. Chem. Phys.
84
,
5759
(
1986
).
20.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
21.
J. M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Am. Chem. Soc.
126
,
12286
(
2004
).
22.

The size dependence shown in Fig. 2 for superheating is caused by the elastic interactions in superheated solids. The smaller the distance between the liquid nucleus and its mirror images in the simulation box, the larger the elastic interactions are, and thus the easier the melting is.

23.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys
, 2nd ed. (
Chapman and Hall
, London,
1992
).
24.
J. D.
Eshelby
, in
Solid State Physics
, edited by
F.
Seitz
and
D.
Turnbull
(
Academic
, New York,
1956
), Vol.
3
, pp.
79
144
.
25.
K.
Lu
and
Y.
Li
,
Phys. Rev. Lett.
80
,
4474
(
1998
); In deriving the elastic energies, we noticed that the bulk modulus for solid is mistaken for that of the liquid K in their paper.
26.
D. R.
Uhlmann
,
J. Non-Cryst. Solids
41
,
347
(
1980
).
27.

The parameters for ΔEsl were calculated from a homogeneous LJ system. The temperature-dependent shear modulus of solid μ=23.2724.51T and bulk modulus of liquid K=39.1938.96T were calculated using the method described in Ref. 36. Other parameters have the following values: ΔLV=1.005εσ3, α=1.05σ, Tm=0.618εkB, and ΔVV=0.16.

28.

Some materials such as ice (below 2kbars), antimony, bismuth, and silicon show decrease in volume during melting. For these materials, the compressive stress is absent for homogeneous melting. However, the elastic energy is still present in the solid due to the “cavity” effect. We are currently investigating this case.

29.
M. J.
Haye
and
C.
Bruin
,
J. Chem. Phys.
100
,
556
(
1994
);
K.
Koga
,
X. C.
Zeng
, and
A. K.
Shchekin
,
J. Chem. Phys.
109
,
4063
(
1998
).
30.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
, Oxford,
2000
), pp.
79
82
.
31.
M.
Forsblom
and
G.
Grimvall
,
Nat. Mater.
4
,
388
(
2005
).
32.
D.
Turnbull
,
J. Chem. Phys.
20
,
411
(
1952
).
33.
R. F.
Wood
and
G. E.
Jellison
,
Semiconductors and Semimetals: Pulsed Laser Processing of Semiconductors
(
Academic Press
, New York,
1984
), Vol.
23
, pp.
166
246
.
34.
M.
Koenig
,
E.
Henry
,
G.
Huser
 et al,
Nucl. Fusion
44
,
S208
(
2004
).
35.
V. I.
Tarzhanov
,
Shock Waves
9
,
307
(
1999
).
36.
J. R.
Ray
,
Comput. Phys. Rep.
8
,
109
(
1988
).
You do not currently have access to this content.