Optimal control simulation is applied to the cis-trans photoisomerization of retinal in rhodopsin within a two-dimensional, two-electronic-state model with a conical intersection [S. Hahn and G. Stock, J. Phys. Chem. B104, 1146 (2000)]. For this case study, we investigate coherent control mechanisms, in which laser pulses work cooperatively with a conical intersection that acts as a “wave-packet cannon.” Optimally designed pulses largely consist of shaping subpulses that prepare a wave packet, which is localized along a reaction coordinate and has little energy in the coupling mode, through multiple electronic transitions. This shaping process is shown to be essential for achieving a high target yield although the envelopes of the calculated pulses depend on the local topography of the potential-energy surfaces around the conical intersection and the choice of target. The control mechanisms are analyzed by considering the motion of reduced wave packets in a nuclear configuration space as well as by snapshots of probability current-density maps.

1.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
, New York,
1993
).
2.
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
, Singapore,
2004
).
3.
R. S.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
4.
H.
Rabitz
,
R.
de Vivie-Riedle
,
M.
Motzkus
, and
K.
Kompa
,
Science
288
,
824
(
2000
).
5.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
,
919
(
1998
).
6.
T.
Brixner
,
G.
Krampert
,
T.
Pfeifer
, et al.,
Phys. Rev. Lett.
92
,
208301
(
2004
), and references therein.
7.
A. P.
Peirce
,
M. A.
Dahler
, and
H.
Rabitz
,
Phys. Rev. A
37
,
4950
(
1988
).
8.
R.
Kosloff
,
S. A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
9.
Y.
Ohtsuki
,
K.
Nakagami
, and
Y.
Fujimura
, in
Advances in Multi-photon Processes and Spectroscopy
edited by
S. H.
Lin
,
A. A.
Villaeys
, and
Y.
Fujimura
(
World Scientific
, Singapore,
2000
), Vol. 13, pp.
3
127
.
10.
C.
Daniel
,
J.
Full
,
L.
González
,
C.
Lupulescu
,
J.
Manz
,
A.
Merli
,
S.
Vajda
, and
L.
Wöste
,
Science
299
,
536
(
2003
).
11.
R. W.
Sharp
and
H.
Rabitz
,
J. Chem. Phys.
121
,
4516
(
2004
).
12.
R. W.
Schoenlein
,
L. A.
Peteanu
,
R. A.
Mathies
, and
C. V.
Shank
,
Science
254
,
412
(
1991
).
13.
L. A.
Peteanu
,
R. W.
Schoenlein
,
Q.
Wang
,
R. A.
Mathies
, and
C. V.
Shank
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
11762
(
1993
).
14.
Q.
Wang
,
R. W.
Schoenlein
,
L. A.
Peteanu
,
R. A.
Mathies
, and
C. V.
Shank
,
Science
266
,
422
(
1994
).
15.
R. M.
Weiss
and
A.
Warshel
,
J. Am. Chem. Soc.
101
,
6131
(
1979
).
16.
V.
Bonačić-Koutecký
,
J.
Köhler
, and
J.
Michl
,
Chem. Phys. Lett.
104
,
440
(
1984
).
17.
M.
Garavelli
,
P.
Celani
,
F.
Bernardi
,
M. A.
Robb
, and
M.
Olivucci
,
J. Am. Chem. Soc.
119
,
6891
(
1997
).
18.
M.
Garavelli
,
T.
Vreven
,
P.
Celani
,
F.
Bernardi
,
M. A.
Robb
, and
M.
Olivucci
,
J. Am. Chem. Soc.
120
,
1285
(
1998
).
19.
F.
Molnar
,
M.
Ben-Num
,
T. J.
Martinez
, and
K.
Schulten
,
J. Mol. Struct.: THEOCHEM
506
,
169
(
2000
).
20.
M.
Nonella
,
J. Phys. Chem. B
104
,
11379
(
2000
), and references therein.
21.
S.
Hahn
and
G.
Stock
,
J. Phys. Chem. B
104
,
1146
(
2000
).
22.
S.
Hahn
and
G.
Stock
,
Chem. Phys.
259
,
297
(
2000
).
23.
R.
de Vivie-Riedle
,
K.
Sundermann
, and
M.
Motzkus
,
Faraday Discuss.
113
,
303
(
1999
).
24.
D.
Geppert
,
A.
Hofmann
, and
R.
de Vivie-Riedle
,
J. Chem. Phys.
119
,
5901
(
2003
).
25.
D.
Geppert
,
L.
Seyfarth
, and
R.
de Vivie-Riedle
,
Appl. Phys. B
79
,
987
(
2004
).
26.
F.
Grossmann
,
L.
Feng
,
G.
Schmidt
,
T.
Kunert
, and
R.
Schmidt
,
Europhys. Lett.
60
,
201
(
2002
).
27.
M.
Sukharev
and
T.
Seideman
,
Phys. Rev. Lett.
93
,
093004
(
2004
).
28.
S.
Sorgues
,
J. M.
Mestdagh
,
J. P.
Visticot
, and
B.
Soep
,
Phys. Rev. Lett.
91
,
103001
(
2003
).
29.
M.
Machholm
and
N. E.
Henriksen
,
J. Chem. Phys.
111
,
3051
(
1999
).
30.
K.
Nakagami
,
Y.
Ohtsuki
, and
Y.
Fujimura
,
J. Chem. Phys.
117
,
6429
(
2002
).
31.
Y.
Ohtsuki
,
K.
Ohara
,
M.
Abe
,
K.
Nakagami
, and
Y.
Fujimura
,
Chem. Phys. Lett.
369
,
525
(
2003
).
32.
L.
Seidner
and
W.
Domcke
,
Chem. Phys.
186
,
27
(
1994
).
33.
W.
Zhu
and
H.
Rabitz
,
J. Chem. Phys.
109
,
385
(
1998
).
34.
J.
Somlói
,
V. A.
Kazakov
, and
D. J.
Tannor
,
Chem. Phys.
172
,
85
(
1993
).
35.
Y.
Ohtsuki
and
H.
Rabitz
, in
Quantum Control: Mathematical and Numerical Challenges
CRM Proceedings and Lecture Notes 33. Montreal, Oct. 2002
(
American Mathematical Society
, Providence, RI,
2003
).
36.
Y.
Ohtsuki
,
G.
Turinici
, and
H.
Rabitz
,
J. Chem. Phys.
120
,
5517
(
2004
), and references therein.
37.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
38.
M.
Abe
,
Y.
Ohtsuki
,
Y.
Fujimura
, and
W.
Domcke
, in
Ultrafast Phenomena XIV
, edited by
T.
Kobayashi
,
T.
Okada
,
T.
Kobayashi
,
K. A.
Nelson
, and
S.
De Silvestri
(
Springer
, Berlin,
2005
), p.
613
.
39.
J.
Li
and
C.
Woywod
,
Chem. Phys.
372
,
128
(
2003
).
40.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics
(
Herman
, Paris,
1977
), Chap. III.
You do not currently have access to this content.