The physicochemical properties of two molten salts, namely, KCl and NaCl, have been studied with a molecular-dynamics approach using a density-functional-based tight-binding (DFTB) model. The obtained results have been compared with a number of previously reported simulations, carried out on smaller systems and using classical force-field techniques. A good agreement has been found for both structural parameters and macroscopic properties, such as self-diffusion coefficients. Furthermore, our DFTB results are very close to the available experimental data. From a more general point of view, our results demonstrate the applicability of DFTB as an efficient tool in the modeling of melts. At the same time, the quality of the obtained results supports the use of this as a reliable alternative to the more expensive ab initio dynamics approaches, if accurate parameters are provided.

1.
G. J.
Janz
,
J. Phys. Chem. Ref. Data Suppl.
2
17
,
505
(
1988
).
2.
Y. I.
Chang
,
Nucl. Technol.
88
,
129
(
1989
).
3.
D.
Lambertin
,
J.
Lacquement
,
S.
Sanchez
, and
G. S.
Picard
,
Plasmas Ions
3
,
65
(
2000
).
4.
Y.
Sakamura
,
T.
Hijikata
,
K.
Kinoshita
 et al,
J. Alloys Compd.
271–273
,
592
(
1998
).
5.
M.
Kurata
,
Y.
Sakamura
,
T.
Hijikata
, and
K.
Kinoshita
,
J. Nucl. Mater.
227
,
110
(
1995
).
6.
S. P.
Fusselman
,
J. J.
Roy
,
D. L.
Grimmett
 et al,
J. Electrochem. Soc.
146
,
2573
(
1999
).
7.
Y. Y.
Derrien
and
J.
Dupuis
,
J. Phys. (Paris)
36
,
191
(
1975
)
8.
A.
Chrissanthopoulos
and
G. N.
Papatheodorou
,
Phys. Chem. Chem. Phys.
2
,
3709
(
2000
).
9.
G. M.
Photiadis
,
B.
Børresen
, and
G. N.
Papatheodorou
,
J. Chem. Soc., Faraday Trans.
94
,
2605
(
1998
).
10.
V.
Dracopoulos
,
B.
Gilbert
, and
G. N.
Papatheodorou
,
J. Chem. Soc., Faraday Trans.
94
,
2601
(
1998
).
11.
V. M.
Rodriguez-Betancourtt
and
D.
Nattland
,
Phys. Chem. Chem. Phys.
7
,
173
(
2005
).
12.
J. C.
Wasse
and
P. S.
Salmon
,
J. Phys.: Condens. Matter
11
,
1381
(
1999
).
13.
D.
Lambertin
,
J.
Lacquement
,
S.
Sanchez
, and
G. S.
Picard
,
Electrochem. Commun.
3
,
519
(
2001
).
14.
D.
Lambertin
,
J.
Lacquement
,
S.
Sanchez
, and
G. S.
Picard
,
Electrochem. Commun.
4
,
447
(
2002
).
15.
D.
Lambertin
,
J.
Lacquement
,
S.
Sanchez
, and
G. S.
Picard
,
Radiochim. Acta
91
,
449
(
2003
).
16.
J. O’M.
Bockris
,
S. R.
Richards
, and
L.
Nanis
,
J. Phys. Chem.
69
,
1627
(
1965
).
17.
E. A.
Pavlatou
,
P. A.
Madden
, and
M.
Wilson
,
J. Chem. Phys.
107
,
10446
(
1997
).
18.
W. J.
Glover
and
P. A.
Madden
,
J. Chem. Phys.
121
,
7293
(
2004
).
19.
P. A.
Madden
,
M.
Wilson
, and
F.
Hutchinson
,
J. Chem. Phys.
120
,
6609
(
2004
).
20.
F.
Lantelme
and
P.
Turq
,
J. Chem. Phys.
77
,
3177
(
1982
).
21.
B.
Morgan
and
P. A.
Madden
,
J. Chem. Phys.
120
,
1402
(
2004
).
22.
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley
, New York,
1991
).
23.
J.
Tomasi
and
M.
Persico
,
Chem. Rev. (Washington, D.C.)
94
,
2027
(
1994
).
24.
M.
Cossi
,
V.
Barone
,
B.
Mennucci
, and
J.
Tomasi
,
Chem. Phys. Lett.
286
,
253
(
1998
).
25.
26.
M.
Reinhard
and
G.
Niedner-Schatteburg
,
J. Chem. Phys.
118
,
3571
(
2003
).
27.
S.
Hazebroucq
,
G. S.
Picard
, and
C.
Adamo
,
J. Chem. Phys.
122
,
224512
(
2005
).
28.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1989
).
29.
G.
Chillemi
,
P.
D’Angelo
,
N. V.
Pavel
,
N.
Sanna
, and
V.
Barone
,
J. Am. Chem. Soc.
124
,
1968
(
2002
).
30.
T.
Kowall
,
F.
Foglia
,
L.
Helm
, and
A. E.
Merbach
,
J. Am. Chem. Soc.
117
,
3790
(
1995
).
31.
J.
de Andrade
,
E. S.
Böes
, and
H.
Stassen
,
J. Phys. Chem. A
106
,
13344
(
2002
).
32.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
33.
R.
Vuilleumier
and
M.
Sprik
,
J. Chem. Phys.
115
,
3454
(
2001
).
34.
D.
Marx
,
M.
Sprik
, and
M.
Parrinello
,
Chem. Phys. Lett.
273
,
360
(
1997
).
35.
G.
Tabacchi
,
C. J.
Mundy
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
117
,
1416
(
2002
).
36.
E.
Fois
,
A.
Selloni
, and
M.
Parrinello
,
Phys. Rev. B
39
,
4812
(
1989
).
37.
P. L.
Silvestrelli
,
A.
Alavi
,
M.
Parrinello
, and
D.
Frenkel
,
Phys. Rev. B
53
,
12750
(
1996
).
38.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
;
Phys. Rev. B
51
,
12947
(
1995
).
39.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
40.
P. W.
Fowler
,
T.
Heine
,
K. M.
Rogers
,
J. P.B.
Sandall
,
G.
Seifert
, and
F.
Zerbetto
,
Chem. Phys. Lett.
300
,
369
(
1999
).
41.
O.
Ponomarenko
,
M. W.
Radny
,
P. V.
Smith
, and
G.
Seifert
,
Phys. Rev. B
67
,
125401
(
2003
).
42.
R.
Astala
,
M.
Kaukonen
,
R. M.
Nieminen
, and
T.
Heine
,
Phys. Rev. B
61
,
2973
(
2000
).
43.
T.
Köhler
,
T.
Frauenheim
, and
G.
Jungnickel
,
Phys. Rev. B
52
,
11837
(
1995
).
44.
Q.
Cui
,
M.
Elstner
, and
M.
Karplus
,
J. Phys. Chem. B
106
,
2721
(
2002
).
45.
K.
Vietze
,
G.
Seifert
,
M.
Richter
,
L.
Dunsch
, and
M.
Krause
,
Proceedings of the 13th International Winterschool on Electronic Properties of Novel Materials
, edited by
H.
Kuzmany
,
J.
Fink
,
M.
Mehring
, and
S.
Roth
(
American Institute of Physics
, New York,
1999
), p.
128
.
46.
L.
Hui
and
F.
Pederiva
,
J. Chem. Phys.
118
,
10707
(
2003
).
47.
G.
Seifert
,
R.
Kaschner
,
M.
Schöne
, and
G.
Pastore
,
J. Phys.: Condens. Matter
10
,
1175
(
1998
).
48.
N. A.
Marks
,
N. C.
Cooper
,
D. R.
McKenzie
,
D. G.
McCulloch
,
P.
Bath
, and
S. P.
Russo
,
Phys. Rev. B
65
,
75411
(
2002
).
49.
I.
Kaplan-Ashiri
,
S. R.
Cohen
,
K.
Gartsman
 et al,
Prism 5: The Fifth Pacific RIM International Conference on Advanced Materials and Processing, PTS 1-5 Materials Science Forum, 2005
(submitted), Vols.
475–479
, Pt. 1–5, pp.
4097
4102
;
V. V.
Ivanovskaya
,
N.
Ranjan
,
T.
Heine
,
G.
Merino
,
G.
Seifert
,
Small
1
,
399
(
2005
).
[PubMed]
50.
H.
Eschrig
and
I.
Bergert
,
Phys. Status Solidi B
90
,
621
(
1978
).
51.
G.
Seifert
and
R. O.
Jones
,
Z. Phys. D: At., Mol. Clusters
20
,
77
(
1991
).
52.
A. M.
Köster
,
G.
Geudtner
,
A.
Goursot
,
T.
Heine
,
A.
Vela
,
S.
Patchkovskii
, and
D. R.
Salahub
, DEMON,
NRC Ottawa
, Canada,
2004
.
53.
D. R.
Lide
,
Handbook of Chemistry and Physics
, 82nd ed. (
CRC
, Boca Raton, FL,
2001
).
54.
U.
von Barth
and
L.
Hedin
,
J. Phys. C
5
,
1629
(
1972
).
55.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
 et al,
Comput. Mater. Sci.
25
,
478
(
2002
).
56.
The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL http: //www.abinit.org).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
58.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
59.
T.
Heine
,
P. W.
Fowler
,
K. M.
Rogers
, and
G.
Seifert
,
J. Chem. Soc., Perkin Trans. 2
1999
,
707
(
1999
).
60.
H. J.C.
Berendsen
,
J. P.M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
61.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
45
(
1964
).
62.
M. V.
Smirnov
,
V. A.
Khokhlov
, and
E. S.
Filatov
,
Electrochim. Acta
32
,
1019
(
1987
).
63.
G.
Ciccotti
,
G.
Jacucci
, and
I. R.
McDonald
,
Phys. Rev. A
13
,
426
(
1976
).
You do not currently have access to this content.