A methodology is described to systematically derive coarse-grained (CG) force fields for molecular liquids from the underlying atomistic-scale forces. The coarse graining of an interparticle force field is accomplished by the application of a force-matching method to the trajectories and forces obtained from the atomistic trajectory and force data for the CG sites of the targeted system. The CG sites can be associated with the centers of mass of atomic groups because of the simplicity in the evaluation of forces acting on these sites from the atomistic data. The resulting system is called a multiscale coarse-grained (MS-CG) representation. The MS-CG method for liquids is applied here to water and methanol. For both liquids one-site and two-site CG representations without an explicit treatment of the long-ranged electrostatics have been derived. In addition, for water a two-site model having the explicit long-ranged electrostatics has been developed. To improve the thermodynamic properties (e.g., pressure and density) for the MS-CG models, the constraint for the instantaneous virial was included into the force-match procedure. The performance of the resulting models was evaluated against the underlying atomistic simulations and experiment. In contrast with existing approaches for coarse graining of liquid systems, the MS-CG approach is general, relies only on the interatomic interactions in the reference atomistic system.

1.
B.
Smit
,
K.
Esselink
,
P. A.J.
Hilbers
,
N. M.
van Os
,
L. A.M.
Rupert
, and
I.
Szleifer
,
Langmuir
9
,
9
(
1993
).
2.
T.
Head-Gordon
and
F. H.
Stillinger
,
J. Chem. Phys.
98
,
3313
(
1993
).
3.
B. J.
Palmer
and
J.
Liu
,
Langmuir
12
,
746
(
1996
).
4.
R.
Goetz
and
R. J.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
5.
J. C.
Shelley
and
M. Y.
Shelley
,
Curr. Opin. Colloid Interface Sci.
5
,
101
(
2000
).
6.
H.
Meyer
,
O.
Biermann
,
R.
Faller
,
D.
Reith
, and
F.
Müller-Plathe
,
J. Chem. Phys.
113
,
6264
(
2000
).
7.
S.
Garde
and
H. S.
Ashbaugh
,
J. Chem. Phys.
115
,
977
(
2001
).
8.
J. C.
Shelley
,
M. Y.
Shelley
,
R. C.
Reeder
,
S.
Bandyopadhyay
, and
M. L.
Klein
,
J. Phys. Chem. B
105
,
4464
(
2001
).
9.
S.
Marrink
and
A.
Mark
,
J. Am. Chem. Soc.
125
,
15233
(
2003
).
10.
M. J.
Stevens
,
J. H.
Hoh
, and
T. B.
Woolf
,
Phys. Rev. Lett.
91
,
188102
(
2003
).
11.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
12.
T.
Murtola
,
E.
Falck
,
M.
Patra
,
M.
Karttunen
, and
I.
Vattulainena
,
J. Chem. Phys.
121
,
9156
(
2004
).
13.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
14.
B.
Forrest
and
U.
Suter
,
J. Chem. Phys.
102
,
7256
(
1995
).
15.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
10896
(
2004
).
16.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
6573
(
2005
).
17.
T. D.
Hone
,
S.
Izvekov
, and
G. A.
Voth
,
J. Chem. Phys.
122
,
54105
(
2005
).
18.
F.
Ercolessi
and
J. B.
Adams
,
Europhys. Lett.
26
,
583
(
1994
).
19.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
20.
P.
Tangney
and
S.
Scandolo
,
J. Chem. Phys.
117
,
8898
(
2002
).
21.
C. L.
Lawson
and
R. J.
Hanson
,
Solving Least Squares Problems
(
Prentice-Hall
, Englewood Cliffs, NJ,
1974
).
22.
C.
De Boor
,
Practical Guide to Splines
(
Springer
, New York,
1978
).
23.
T. R.
Forester
and
W.
Smith
, DL_POLY user manual, CCLRC, Daresbury Laboratory, Daresbury, Warrington, UK,
1995
.
24.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
, San Diego,
1996
).
25.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
, Oxford,
1987
).
26.
R.
Walser
,
A. E.
Mark
,
W. F.
van Gunsteren
,
M.
Lauterbach
, and
G.
Wipff
,
J. Chem. Phys.
112
,
10450
(
2000
).
27.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
28.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
29.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
30.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
31.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
32.
S.
Izvekov
and
G.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
33.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
34.
D.
Asthagiri
,
L. R.
Pratt
, and
J. D.
Kress
,
Phys. Rev. E
68
,
041505
(
2003
).
35.
I.-F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
 et al,
J. Phys. Chem. B
108
,
12990
(
2004
).
36.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hütter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
37.
P. H.-L.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
40.
M. W.
Johnson
,
E.
Sándor
, and
E.
Arzi
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B31
,
1998
(
1975
).
41.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
42.
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 20899, edited by
P. J.
Linstrom
and
W. G.
Mallard
, NIST, Gaithersburg, MD,
2003
http://webbook.nist.gov
43.
R. D.
Goodwin
,
J. Phys. Chem. Ref. Data Monogr.
16
,
799
(
1967
).
44.
CRC Handbook of Chemistry and Physics
, 85th ed., edited by
D. R.
Lide
(
CRC
, Boca Raton, FL,
2004
).
You do not currently have access to this content.