We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metastable gas.

1.
C. T. R.
Wilson
,
Philos. Trans. R. Soc. London, Ser. A
189
,
265
(
1897
).
2.
J. J.
Thomson
,
Conduction of Electricity through Gases
(
Cambridge University Press
, Cambridge,
1906
), Sec. 92.
3.
T.
Seto
,
K.
Okuyama
,
L.
de Juan
, and
J.
Fernández de la Mora
,
J. Chem. Phys.
107
,
1576
(
1997
).
4.
G.
Gamero-Gastano
and
J.
Fernandez de la Mora
,
J. Chem. Phys.
117
,
3345
(
2002
).
5.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
, London,
1991
).
6.
I.
Kusaka
,
Z.-G.
Wang
, and
J. H.
Seinfeld
,
J. Chem. Phys.
102
,
913
(
1995
).
7.
I.
Kusaka
,
Z.-G.
Wang
, and
J. H.
Seinfeld
,
J. Chem. Phys.
103
,
8993
(
1995
).
8.
K. J.
Oh
,
G. T.
Gao
, and
X. C.
Zeng
,
Phys. Rev. Lett.
86
,
5080
(
2001
).
9.
E.
Broadskaya
,
A. P.
Lyubartsev
, and
A.
Laaksonen
,
J. Chem. Phys.
116
,
7879
(
2002
).
10.
M.
Born
,
Z. Phys.
1
,
45
(
1920
).
11.

The free energy due to the polarization and the charge12 is Fe=dr(P22χ+E28π) with (E+4πP)=4πρ. For P=χE we obtain Eqs. (2.1) and (2.5). If P=0, it is equal to the vacuum result Z2e22RB for a single ion. If P=χE without electrostriction, it is equal to ΔΩBorn in Eq. (2.17). In literature (Refs. 5 and 10) the difference of these two quantities is the Born formula for the solvation free energy.

12.
A.
Onuki
, in
Nonlinear Dielectric Phenomena in Complex Liquids
,
NATO Science Series II: Mathematics, Physics and Chemistry
, edited by
S. J.
Rzoska
and
S. J.
Zhelezny
(
Kluwer Academic
, Dordrecht,
2004
), Vol.
157
.
13.
A.
Onuki
and
H.
Kitamura
,
J. Chem. Phys.
121
,
3143
(
2004
).
14.
Y.
Marcus
,
Chem. Rev. (Washington, D.C.)
88
,
1475
(
1988
).
15.
M. H.
Abraham
,
J.
Liszi
, and
L.
Meszaros
,
J. Chem. Phys.
70
,
2491
(
1979
).
16.
L.
Sandberg
and
O.
Edholm
,
J. Chem. Phys.
116
,
2936
(
2002
).
17.
D. P.
Fernandez
,
A. R. H.
Goodwin
,
E. W.
Lemmon
,
J. M. H.
Levelt Sengers
, and
R. C.
Williams
,
J. Phys. Chem. Ref. Data
26
,
1125
(
1997
).
18.
F. E.
Harris
and
B. J.
Alder
,
J. Chem. Phys.
21
,
1031
(
1953
).
19.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
20.
D. G.
Archer
and
P.
Wang
,
J. Phys. Chem. Ref. Data
19
,
371
(
1990
).
21.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
, Cambridge,
2002
).
22.
A. K.
Wyczalkowska
,
Kh. S.
Abdulkadirova
,
M. A.
Anisimov
, and
J. V.
Sengers
,
J. Chem. Phys.
113
,
4985
(
2000
).
23.
S. B.
Kiselev
and
J. F.
Ely
,
J. Chem. Phys.
119
,
8645
(
2003
). These authors wrote the gradient free-energy density as c0n2nc2 and found that c0kBTnc13 gives good estimates of the surface tension over a wide temperature range for water. This gives CkBTσ52×35312.5 from C=2c0nc2 and Eq. (2.13).
24.

In discussing the droplet growth we need to consider the inhomogeneity of the temperature induced by latent heat absorption or generation at the interface (Ref. 21).

25.

In Eq. (2.17) we obtain RB=(56)Ri from Eq. (2.5) if the integration is performed also in the region r<Ri (Ref. 13).

26.
If the radius Ri of the charged particle is much larger than the microscopic radius σ of the fluid, a first-order prewetting transition should take place in the off-critical condition near the coexistence curve. A similar layer transition was predicted for liquid crystals:
J.-I.
Fukuda
,
H.
Stark
, and
H.
Yokoyama
,
Phys. Rev. E
69
,
021714
(
2004
).
27.
D. W.
Oxtoby
,
J. Phys.: Condens. Matter
4
,
7627
(
1992
).
28.
P. G.
Debenedetti
,
Metastable Liquids
(
Princeton University
, Princeton, NJ,
1996
).
29.

In dynamics growing or shrinking of the droplet occurs depending on whether the added particle number is positive or negative. For example, this can be verified if we assume the time-evolution equation nt=2δ(ΔΩ)δn.

30.
A. B.
Nadykto
and
F.
Yu
,
Phys. Rev. Lett.
93
,
016101
(
2004
).
31.
S. M.
Kathmann
,
G. K.
Schenter
, and
B. C.
Garrett
,
Phys. Rev. Lett.
94
,
116104
(
2005
).
32.
Lord
Rayleigh
,
The Theory of Sounds
(
Dover
, New York,
1945
), Sec. 364. Rayleigh examined surface deformations of a charged liquid droplet in gas and found that it breaks into smaller droplets when its radius is larger than RR in Eq. (3.13).
33.

Near the critical point we obtain RRξ(1TTc)(ν+β)3, where ξ(1TTc)ν is the correlation length with ν0.63 and β0.33 being the critical exponents (Ref. 21). The interface thickness is of the order ξ.

34.
D. W.
Oxtoby
and
R.
Evans
,
J. Chem. Phys.
89
,
7521
(
1988
).
You do not currently have access to this content.