The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 02000-cm1 range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys.119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface.

1.
C. K.
Nandi
,
M. K.
Hazra
, and
T.
Chakraborty
,
J. Chem. Phys.
121
,
7562
(
2004
).
2.
C. A.
Southern
,
D. H.
Levy
,
J. A.
Stearns
,
G. M.
Florio
,
A.
Longarte
, and
T. S.
Zwier
,
J. Phys. Chem. A
108
,
4599
(
2004
).
3.
K.
Heyne
,
N.
Huse
,
J.
Dreyer
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
S.
Mukamel
,
J. Chem. Phys.
121
,
902
(
2004
).
4.
J. R.
Roscioli
,
D. W.
Pratt
,
Z.
Smedarchina
,
W.
Siebrand
, and
A. F.
Ramos
,
J. Chem. Phys.
120
,
11351
(
2004
).
5.
J. A.
Stearm
,
A.
Das
, and
T. S.
Zwier
,
Phys. Chem. Chem. Phys.
6
,
2605
(
2004
).
6.
C. K.
Nandi
,
M. K.
Hazra
, and
T.
Chakraborty
,
J. Chem. Phys.
121
,
5261
(
2004
).
7.
V. V.
Matylitsky
,
C.
Riehn
,
M. F.
Gelin
, and
B.
Brutschy
,
J. Chem. Phys.
119
,
10553
(
2003
).
8.
F. T.
Hung
,
W. P.
Hu
,
T. H.
Li
,
C. C.
Cheng
, and
P. T.
Chou
,
J. Phys. Chem. A
107
,
3244
(
2003
).
9.
G. M.
Florio
,
T. S.
Zwier
,
E. M.
Myshakin
,
K. D.
Jordan
, and
E. L.
Sibert
 III
,
J. Chem. Phys.
118
,
1735
(
2003
).
10.
J. M.
Bakker
,
L.
Mac Aleese
,
G.
von Helden
, and
G.
Meijer
,
J. Chem. Phys.
119
,
11180
(
2003
).
11.
D. A.
Williamson
and
B. E.
Bowler
,
J. Am. Chem. Soc.
120
,
10902
(
1998
).
12.
R. I.
Cukier
and
D. G.
Nocera
,
Annu. Rev. Phys. Chem.
49
,
337
(
1998
).
13.
K.
Remmers
,
W. L.
Meerts
, and
I.
Ozier
,
J. Chem. Phys.
112
,
10890
(
2000
).
14.
F.
Madeja
and
M.
Havenith
,
J. Chem. Phys.
117
,
7162
(
2002
).
15.
J. C.
Baum
and
D. S.
McClure
,
J. Am. Chem. Soc.
102
,
720
(
1980
).
16.
G. M.
Florio
,
E. L.
Sibert
 III
, and
T. S.
Zwier
,
Faraday Discuss.
118
,
315
(
2001
).
17.
T.
Ebata
,
M.
Kayano
,
S.
Sato
, and
N.
Mikami
,
J. Phys. Chem. A
105
,
8623
(
2001
).
18.
S. G.
Stepanian
,
I. D.
Reva
,
E. D.
Radchenko
, and
G. G.
Sheina
,
Vib. Spectrosc.
11
,
123
(
1996
).
19.
A.
Das
,
C. K.
Nandi
, and
T.
Chakraborty
,
J. Chem. Phys.
118
,
9589
(
2003
).
20.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schelegel
 et al., GAUSSIAN 98, Revision A.11.1,
Gaussian Inc.
, Pittsburgh, PA,
1998
.
21.
G.
Allen
,
J. G.
Wathinson
, and
K. H.
Webb
,
Spectrochim. Acta
22
,
593
(
1966
).
22.
D. E.
Poeltl
and
J. K.
McVey
,
J. Chem. Phys.
78
,
4349
(
1983
).
23.
D. E.
Poeltl
and
J. K.
McVey
,
J. Chem. Phys.
80
,
1801
(
1984
).
24.
Y.
Tomioka
,
H.
Abe
,
N.
Mikami
, and
M.
Ito
,
J. Phys. Chem.
88
,
2263
(
1984
).
25.
C. S.
Tautermann
,
A. F.
Voegel
, and
K. R.
Liedl
,
J. Chem. Phys.
631
,
120
(
2004
).
26.
C. K.
Nandi
and
T.
Chakraborty
,
J. Chem. Phys.
120
,
8521
(
2004
).
27.
A. M.
Mebel
,
M.
Hayashi
,
K. K.
Liang
, and
S. H.
Lin
,
J. Phys. Chem. A
103
,
10647
(
1999
).
You do not currently have access to this content.