Photodissociation of indole at 193 and 248 nm under collision-free conditions has been studied in separate experiments using multimass ion imaging techniques. H atom elimination was found to be the only dissociation channel at both wavelengths. The photofragment translational energy distribution obtained at 193 nm contains a fast and a slow component. Fifty-four percent of indole following the 193 nm photoexcitation dissociate from electronically excited state, resulting in the fast component. The rest of 46% indole dissociate through the ground electronic state, giving rise to the slow component. A dissociation rate of 6×105s1, corresponding to the dissociation from the ground electronic state, was determined. Similar two-component translational energy distribution was observed at 248 nm. However, more than 80% of indole dissociate from electronically excited state after the absorption of 248 nm photons. A comparison with the potential energy surfaces from the ab initio calculation has been made.

1.
J. R.
Platt
,
J. Chem. Phys.
19
,
101
(
1951
).
2.
B. J.
Fender
,
D. M.
Sammeth
, and
P. R.
Callis
,
Chem. Phys. Lett.
239
,
31
(
1995
).
3.
L. A.
Phillips
and
D. H.
Levy
,
J. Chem. Phys.
85
,
1327
(
1986
).
4.
R.
Bersohn
,
U.
Even
, and
J.
Jortner
,
J. Chem. Phys.
80
,
1050
(
1984
).
5.
G. A.
Bickel
,
D. R.
Demmer
,
E. A.
Outhouse
, and
S. C.
Wallace
,
J. Chem. Phys.
91
,
6013
(
1989
).
6.
N.
Glasser
and
H.
Lami
,
J. Chem. Phys.
74
,
6526
(
1981
).
7.
D. R.
Demmer
,
G. W.
Leach
, and
S. C.
Wallace
,
J. Phys. Chem.
98
,
12834
(
1994
).
8.
C.
Dedonder-Lardeux
,
D.
Grosswasser
,
C.
Jouvet
, and
S.
Martrenchard
,
PhysChemComm
4
,
1
(
2001
).
9.
A. L.
Sobolewski
and
W.
Domcke
,
Chem. Phys. Lett.
315
,
293
(
1999
).
10.
(a)
A. L.
Sobolewski
,
W.
Domcke
,
C.
Dedonder-Lardeux
, and
C.
Jouvet
,
Phys. Chem. Chem. Phys.
4
,
1093
(
2002
);
(b)
W.
Domcke
and
A. L.
Sobolewski
,
Science
,
302
,
1693
(
2003
);
[PubMed]
(c)
K.
Daigoku
,
S.
Ishiuchi
,
M.
Sakai
,
M.
Fujii
, and
K.
Hashimoto
,
J. Chem. Phys.
,
119
,
5149
5157
(
2003
);
(d)
G. A.
Pino
,
C.
Dedonder-Lardeux
,
G.
Gregoire
,
C.
Jouvet
,
S.
Martrenchard
, and
D.
Solgadi
,
J. Chem. Phys.
111
,
10747
(
1999
);
(e)
G. A.
Pino
,
G.
Gregoire
,
C.
Dedonder-Lardeux
,
C.
Dedonder-Lardeux
,
C.
Jouvet
,
S.
Martrenchard
, and
D.
Solgadi
,
Phys. Chem. Chem. Phys.
2
,
893
(
2000
);
(f)
S.
Ishiuchi
,
K.
Daigoku
,
M.
Saeki
,
M.
Sakai
,
K.
Hashimoto
, and
M.
Fujii
,
J. Chem. Phys.
17
,
7077
(
2002
);
(g)
S.
Ishiuchi
,
K.
Daigoku
,
M.
Saeki
,
M.
Sakai
,
K.
Hashimoto
, and
M.
Fujii
,
J. Chem. Phys.
117
,
7083
(
2002
).
11.
B. C.
Dian
,
A.
Longarte
, and
T. S.
Zwier
,
J. Chem. Phys.
118
,
2696
(
2003
).
12.
S. T.
Tsai
,
C. K.
Lin
,
Y. T.
Lee
, and
C. K.
Ni
,
Rev. Sci. Instrum.
72
,
1963
(
2001
).
13.
S. T.
Tsai
,
C. K.
Lin
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Chem. Phys.
113
,
67
(
2000
).
14.
C. K.
Lin
,
C. L.
Huang
,
J. C.
Jiang
,
H.
Chang
,
S. H.
Lin
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Am. Chem. Soc.
124
,
4068
(
2002
).
15.
M.
Jonsson
,
J.
Lind
,
T. E.
Eriksen
, and
G.
Merenyi
,
J. Am. Chem. Soc.
116
,
1423
(
1994
).
16.
P. R.
Callis
,
Annu. Rev. Phys. Chem.
34
,
329
(
1983
).
17.
D.
Creed
,
Photochem. Photobiol.
,
537
,
39
(
1984
).
18.
A.
Reuther
,
H.
Iglev
,
R.
Laenen
, and
A.
Laubereau
,
Chem. Phys. Lett.
325
,
360
(
2000
).
19.
H. D.
Bist
,
J. C.D.
Brand
, and
D. R.
Williams
,
J. Mol. Spectrosc.
24
,
413
(
1967
).
20.
A.
Sur
and
P. M.
Johnson
,
J. Chem. Phys.
84
,
1206
(
1986
).
21.
A.
Bussandri
and
H.
van Willigen
,
J. Phys. Chem. A
106
,
1524
(
2002
).
22.
R.
Hermann
,
G. R.
Mahalaxmi
,
T.
Jochum
,
S.
Naumov
, and
O.
Brede
,
J. Phys. Chem. A
106
,
2379
(
2002
).
23.
C. M.
Tseng
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Chem. Phys.
121
,
2459
(
2004
).
24.
C. L.
Huang
,
J. C.
Jiang
,
S. H.
Lin
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Chem. Phys.
116
,
7779
(
2002
).
25.
C. L.
Huang
,
J. C.
Jiang
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Chem. Phys.
117
,
7034
(
2002
).
You do not currently have access to this content.