The purpose of this study is to compare the results from molecular-dynamics and dissipative particle dynamics (DPD) simulations of Lennard-Jones (LJ) fluid and determine the quantitative effects of DPD coarse graining on flow parameters. We illustrate how to select the conservative force coefficient, the cut-off radius, and the DPD time scale in order to simulate a LJ fluid. To show the effects of coarse graining and establish accuracy in the DPD simulations, we conduct equilibrium simulations, Couette flow simulations, Poiseuille flow simulations, and simulations of flow around a periodic array of square cylinders. For the last flow problem, additional comparisons are performed against continuum simulations based on the spectral/hp element method.

1.
P. J.
Hoogerburgge
and
J. M.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
2.
P.
Espanol
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
3.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
4.
S.
Succi
,
The Lattice Boltzmann Equation-For Fluid Dynamics and Beyond
(
Oxford University Press
, New York,
2001
).
5.
S.
Chen
and
G. D.
Doolen
,
Annu. Rev. Phys. Chem.
30
,
329
(
1998
).
6.
R. D.
Groot
and
K. L.
Rabone
,
Biophys. J.
81
,
25
(
2001
).
7.
A.
Maiti
and
S.
McGrother
,
J. Chem. Phys.
120
,
1594
(
2004
).
8.
M.
Revenga
,
I.
Zuniga
, and
P.
Espanol
,
Comput. Phys. Commun.
121-122
,
309
(
1999
).
9.
S. M.
Willemsen
,
H. C.
Hoefsloot
, and
P. D.
Iedema
,
Int. J. Mod. Phys. C
11
,
881
(
2000
).
10.
X.
Fan
,
N.
Phan Thien
,
N.
Yong
,
X.
Wu
, and
D.
Xu
,
Phys. Fluids
15
,
11
(
2003
).
11.
M.
Noro
,
P.
Paul
, and
P.
Warren
,
J. Am. Chem. Soc.
125
,
7190
(
2003
).
12.
A. W.
Lees
and
S. F.
Edwards
,
J. Phys. C
5
,
1921
(
1972
).
13.
I. V.
Pivkin
, Ph.D. thesis,
Brown University
(
2005
).
14.
G.
Karniadakis
,
S.
Sherwin
,
Spectral/Hp Element Methods for CFD
(
Oxford University Press
, New York,
1999
).
15.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1994
).
16.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
Academic
, New York,
2002
.
17.
P.
Nikunen
,
M.
Karttunen
, and
I.
Vattulainen
,
Comput. Phys. Commun.
153
,
407
(
2003
).
18.
(a)
C. P.
Lowe
,
Europhys. Lett.
47
,
145
(
1999
);
(b) This is not true for the modified DPD version developed by Lowe.
19.
K.
Meier
,
A.
Laesecke
, and
S.
Kabelac
,
J. Chem. Phys.
121
,
3671
(
2004
).
20.
P.
Thompson
and
M.
Robbins
,
Phys. Rev. A
41
,
6830
(
1990
).
21.
M.
Cieplak
,
J.
Koplik
, and
J.
Banavar
,
Phys. Rev. Lett.
86
,
803
(
2001
).
22.
P.
Thompson
and
S.
Troian
,
Nature (London)
389
,
360
(
1997
).
23.
I. V.
Pivkin
and
G. E.
Karniadakis
,
J. Comput. Phys.
207
,
114
(
2005
).
24.
G.
Karniadakis
and
A.
Beskok
,
Microflows, Fundamentals and Simulation
(
Springer
, New York,
2001
).
25.
B.
Li
and
D. Y.
Kwok
,
Phys. Rev. Lett.
90
,
124502
(
2003
).
26.
L.-S.
Luo
,
Phys. Rev. Lett.
92
,
139401
(
2004
).
27.
S.
Ansumali
and
I. V.
Karlin
,
Phys. Rev. E
66
,
026311
(
2002
).
28.
E.
Boek
,
P.
Coveney
,
H.
Lekkererker
, and
P.
van der Schoot
,
Phys. Rev. E
55
,
3124
(
1997
.
You do not currently have access to this content.