Peroxynitrous acid (HOONO) is generated in a pulsed supersonic expansion through recombination of photolytically generated OH and NO2 radicals. A rotationally resolved infrared action spectrum of HOONO is obtained in the OH overtone region at 6971.351(4)cm1 (origin), providing definitive spectroscopic identification of the trans-perp (tp) conformer of HOONO. Analysis of the rotational band structure yields rotational constants for the near prolate asymmetric top, the ratio of the a-type to c-type components of the transition dipole moment for the hybrid band, and a homogeneous linewidth arising from intramolecular vibrational energy redistribution and/or dissociation. The quantum state distribution of the OH (ν=0,JOH) products from dissociation is well characterized by a microcanonical statistical distribution constrained only by the energy available to products, 1304±38cm1. This yields a 5667±38cm1[16.2(1)kcalmol1] binding energy for tp-HOONO. An equivalent available energy and corresponding binding energy are obtained from the highest observed OH product state. Complementary high level ab initio calculations are carried out in conjunction with second-order vibrational perturbation theory to predict the spectroscopic observables associated with the OH overtone transition of tp-HOONO including its vibrational frequency, rotational constants, and transition dipole moment. The same approach is used to compute frequencies and intensities of multiple quantum transitions that aid in the assignment of weaker features observed in the OH overtone region, in particular, a combination band of tp-HOONO involving the HOON torsional mode.

1.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
,
Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
(
Academic
, San Diego,
1999
).
2.
S. S.
Brown
,
R. K.
Talukdar
, and
A. R.
Ravishankara
,
Chem. Phys. Lett.
299
,
277
(
1999
).
3.
D. M.
Golden
,
J. R.
Barker
, and
L. L.
Lohr
,
J. Phys. Chem. A
107
,
11057
(
2003
).
4.
D. M.
Golden
and
G. P.
Smith
,
J. Phys. Chem. A
104
,
3991
(
2000
).
5.
J. B.
Burkholder
,
P. D.
Hammer
, and
C. J.
Howard
,
J. Phys. Chem.
91
,
2136
(
1987
).
6.
J. S.
Robertshaw
and
I. W. M.
Smith
,
J. Phys. Chem.
86
,
785
(
1982
).
7.
B. D.
Bean
,
A. K.
Mollner
,
S. A.
Nizkorodov
,
G.
Nair
,
M.
Okumura
,
S. P.
Sander
,
K. A.
Peterson
, and
J. S.
Francisco
,
J. Phys. Chem. A
107
,
6974
(
2003
).
8.
D. A.
Dixon
,
D.
Feller
,
C.-G.
Zhan
, and
J. S.
Francisco
,
J. Phys. Chem. A
106
,
3191
(
2002
).
9.
M. P.
McGrath
and
F. S.
Rowland
,
J. Phys. Chem.
98
,
1061
(
1994
).
10.
J.
Matthews
,
A.
Sinha
, and
J. S.
Francisco
,
J. Chem. Phys.
120
,
10543
(
2004
).
11.
J. L.
Fry
,
S. A.
Nizkorodov
,
M.
Okumura
,
C. M.
Roehl
,
J. S.
Francisco
, and
P. O.
Wennberg
,
J. Chem. Phys.
121
,
1432
(
2004
).
12.
I. B.
Pollack
,
I. M.
Konen
,
E. X. J.
Li
, and
M. I.
Lester
,
J. Chem. Phys.
119
,
9981
(
2003
).
13.
S. A.
Nizkorodov
and
P. O.
Wennberg
,
J. Phys. Chem. A
106
,
855
(
2002
).
14.
B.-M.
Cheng
,
J.-W.
Lee
, and
Y.-P.
Lee
,
J. Phys. Chem.
95
,
2814
(
1991
).
15.
W.-J.
Lo
and
J.-W.
Lee
,
J. Chem. Phys.
101
,
5494
(
1994
).
16.
B. J.
Drouin
,
J. L.
Fry
, and
C. E.
Miller
,
J. Chem. Phys.
120
,
5505
(
2004
).
17.
H.
Hippler
,
S.
Nasterlack
, and
F.
Striebel
,
Phys. Chem. Chem. Phys.
4
,
2959
(
2002
).
18.
R. S.
Ruoff
,
T. D.
Klots
,
T.
Emilsson
, and
H. S.
Gutowsky
,
J. Chem. Phys.
93
,
3142
(
1990
).
19.
P. D.
Godfrey
,
R. D.
Brown
, and
F. M.
Rodgers
,
J. Mol. Struct.
376
,
65
(
1996
).
20.
L. S.
Rothman
,
C. P.
Rinsland
,
A.
Goldman
 et al,
J. Quant. Spectrosc. Radiat. Transf.
60
,
665
(
1998
).
21.
J.
Luque
and
D. R.
Crosley
, SRI International Report No. MP 99,
1999
.
22.
G. H.
Dieke
and
H. M.
Crosswhite
,
J. Quant. Spectrosc. Radiat. Transf.
2
,
97
(
1962
).
23.
D. M.
Lubman
,
C. T.
Rettner
, and
R. N.
Zare
,
J. Phys. Chem.
86
,
1129
(
1982
).
24.
J. M.
Hossenlopp
,
D. T.
Anderson
,
M. W.
Todd
, and
M. I.
Lester
,
J. Chem. Phys.
109
,
10707
(
1998
).
25.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
S26
,
879
(
1992
).
26.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
27.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
28.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
29.
I. M.
Mills
, in
Modern Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Matthews
(
Academic
, New York,
1972
), p.
115
.
30.
M. E.
Varner
and
J. F.
Stanton
(unpublished).
31.

All but those of the type ϕijkl were calculated. Those having four different indices do not enter into expressions for the vibrational levels or the associated transition moments using VPT2.

32.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
33.

They give equivalent results, but differ considerably in structure and the ease with which formulas can be derived for transition moments.

34.
A.
Roth
,
Vacuum Technology
, 2nd ed. (
North-Holland
, Amsterdam,
1982
).
35.
W. J.
Chen
,
W. J.
Lo
,
B. M.
Cheng
, and
Y. P.
Lee
,
J. Chem. Phys.
97
,
7167
(
1992
).
36.
H. M.
Pickett
,
J. Mol. Spectrosc.
148
,
371
(
1991
).
37.
A.
Sinha
,
R. L.
Vander Wal
, and
F. F.
Crim
,
J. Chem. Phys.
91
,
2929
(
1989
).
38.

It should be noted that the OH product state distribution reported by Fry et al. under discharge flow conditions fits to a lower rotational temperature of 320K, demonstrating that their distribution is partially thermalized to the bath (233K) even with minimal delay between IR pump and UV probe lasers. See Fig. 6 of Ref. 11.

39.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
, Cambridge,
1993
).
40.
J. A.
Coxon
,
Can. J. Phys.
58
,
933
(
1980
).
41.
F.
Melen
and
M.
Herman
,
J. Phys. Chem. Ref. Data
21
,
831
(
1992
).
42.
T.
Baer
and
W. L.
Hase
,
Unimolecular Reaction Dynamics
(
Oxford University Press
, New York,
1996
).
43.
R. G.
Gilbert
and
S. C.
Smith
,
Theory of Unimolecular and Recombination Reactions
(
Blackwell Scientific
, Oxford,
1990
).
44.

An overall amplitude scaling factor (not reported) was also allowed to vary in the fit.

45.
M.
Hunter
,
S. A.
Reid
,
D. C.
Robie
, and
H.
Reisler
,
J. Chem. Phys.
99
,
1093
(
1993
).
46.
A.
Sinha
,
R. L.
Vander Wal
, and
F. F.
Crim
,
J. Chem. Phys.
92
,
401
(
1990
).
47.
I. M.
Konen
and
M. I.
Lester
(unpublished).
48.

Higher OH product states may be populated, but not observed at the present signal-to-noise ratio.

49.
G.
Scoles
,
Atomic and Molecular Beam Methods
(
Oxford University Press
, New York,
1988
), Vol.
2
.
50.
R.
Campargue
,
Atomic and Molecular Beams: The State of the Art 2000
(
Springer
, New York,
2001
).
51.
A. B.
McCoy
(private communication).
52.
D.
Bingemann
,
M. P.
Gorman
,
A. M.
King
, and
F. F.
Crim
,
J. Chem. Phys.
107
,
661
(
1997
).
53.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12735
(
1996
).
54.
M.
Gruebele
and
R.
Bigwood
,
Int. Rev. Phys. Chem.
17
,
91
(
1998
).
55.
K.
Doclo
and
U.
Röthlisberger
,
Chem. Phys. Lett.
297
,
205
(
1998
).
56.
Y.
Zhao
,
K. N.
Houk
, and
L. P.
Olson
,
J. Phys. Chem. A
108
,
5864
(
2004
).
57.
R. S.
Zhu
and
M. C.
Lin
,
J. Chem. Phys.
119
,
10667
(
2003
).
58.
J. R.
Barker
(private communication).
59.
H. W.
Jin
,
Z. Z.
Wang
,
Q. S.
Li
, and
X. R.
Huang
,
THEOCHEM
624
,
115
(
2003
).
60.
J. R.
Barker
and
D. M.
Golden
,
Chem. Rev. (Washington, D.C.)
103
,
4577
(
2003
).
You do not currently have access to this content.