We show that density functional theory within the RPA (random phase approximation for the exchange-correlation energy) provides a correct description of bond dissociation in H2 in a spin-restricted Kohn–Sham formalism, i.e., without artificial symmetry breaking. We present accurate adiabatic connection curves both at equilibrium and beyond the Coulson–Fisher point. The strong curvature at large bond length implies important static (left–right) correlation, justifying modern hybrid functional constructions but also demonstrating their limitations. Although exact at infinite separation and accurate near the equilibrium bond length, the RPA dissociation curve displays unphysical repulsion at larger but finite bond lengths. Going beyond the RPA by including the exact exchange kernel (RPA+X), we find a similar repulsion. We argue that this deficiency is due to the absence of double excitations in adiabatic linear response theory. Further analyzing the H2 dissociation limit we show that the RPA+X is not size consistent, in contrast to the RPA.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
, B
864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
, A
1133
(
1965
).
3.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
, Weinheim,
2001
).
4.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
5.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
6.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
7.
J.
Dobson
, in
Topics of Condensed Matter Physics
, edited by
M. P.
Das
(
Nova
, New York,
1994
), p.
121
;
8.
J. F.
Dobson
and
B. P.
Dinte
,
Phys. Rev. Lett.
76
,
1780
(
1996
).
9.
W.
Kohn
,
Y.
Meir
, and
D. E.
Makarov
,
Phys. Rev. Lett.
80
,
4153
(
1998
).
10.
E.
Engel
,
A.
Höck
, and
R. M.
Dreizler
,
Phys. Rev. A
61
,
032502
(
2000
).
11.
P.
García-Gonzáles
and
R. W.
Godby
,
Phys. Rev. Lett.
88
,
056406
(
2002
).
12.
M.
Ernzerhof
,
K.
Burke
, and
J. P.
Perdew
, in
Recent Developments in Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
, Amsterdam,
1997
).
13.
T.
Bally
and
G. Nahsari
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
14.
M.
Sodupe
,
J.
Bertran
,
L.
Rodríguez-Santiago
, and
E. J.
Baerends
,
J. Phys. Chem. A
103
,
166
(
1999
).
15.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
, in
Topics in Current Chemistry
, edited by
R. F.
Nalewajski
(
Springer
, Berlin,
1996
), Vol.
180
, p.
1
.
16.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Chem. Phys.
107
,
5007
(
1997
).
17.
J. P.
Perdew
,
A.
Savin
, and
K.
Burke
,
Phys. Rev. A
51
,
4531
(
1995
).
18.
A. M.
Lee
and
N. C.
Handy
,
J. Chem. Soc., Faraday Trans.
89
,
3999
(
1993
).
19.
C. D.
Sherill
,
M. S.
Lee
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
302
,
425
(
1999
).
20.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
332
,
409
(
2000
);
M.
Filatov
and
S.
Shaik
,
J. Phys. Chem. A
104
,
6628
(
2000
).
21.
R.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
,
J. Chem. Phys.
116
,
1250
(
2002
).
22.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
);
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
23.
J. P.
Perdew
and
K.
Schmidt
, in
Density Functional Theory and Its Application to Materials
, edited by
V.
Van Doren
,
C.
Van Alsenoy
, and
P.
Geerlings
(
AIP
, Melville, NY,
2001
).
24.
S.
Kurth
and
J. P.
Perdew
,
Phys. Rev. B
59
,
10461
(
1999
).
25.
J. F.
Dobson
and
J.
Wang
,
Phys. Rev. Lett.
82
,
2123
(
1999
).
26.
F.
Furche
,
Phys. Rev. B
64
,
195120
(
2001
).
27.
M.
Fuchs
and
X.
Gonze
,
Phys. Rev. B
65
,
235109
(
2002
).
28.
H.
Rydberg
,
M.
Dion
,
N.
Jacobson
,
E.
Schröder
,
P.
Hylgaard
,
S. I.
Simak
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
91
,
126402
(
2003
).
29.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
30.
Z.
Yan
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. B
61
,
16430
(
2000
).
31.
J. F.
Dobson
and
J.
Wang
,
Phys. Rev. B
62
,
10038
(
2000
).
32.
J. F.
Dobson
,
J.
Wang
, and
T.
Gould
,
Phys. Rev. B
66
,
081108
(
2002
).
33.
M.
Grüning
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
7183
(
2003
).
34.
J. M.
Herbert
and
J. E.
Harriman
,
Chem. Phys. Lett.
382
,
142
(
2003
).
35.
E. J.
Baerends
,
Phys. Rev. Lett.
87
,
133004
(
2001
).
36.
W.
Kolos
and
C. C.
Roothaan
,
Rev. Mod. Phys.
32
,
219
(
1960
).
37.

Of course, one never works with this decomposition within DFT. The interpretation in terms of covalent and ionic parts is, however, quite natural when ΨKS is analyzed as a many-electron wave function.

38.
C. A.
Coulson
and
I.
Fisher
,
Philos. Mag.
40
,
386
(
1949
).
39.
O.
Gunnarsson
and
B.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
40.
R.
van Leeuwen
,
O. V.
Gritsenko
, and
E. J.
Baerends
, in
Topics in Current Chemistry
, edited by
R. F.
Nalewajski
(
Springer
, Berlin,
1996
), Vol.
180
, p.
107
.
41.
C.
Filippi
,
S. B.
Healy
,
P.
Kratzer
,
E.
Pehlke
, and
M.
Scheffler
,
Phys. Rev. Lett.
89
,
166102
(
2002
).
42.
R.
Bauernschmitt
and
R.
Ahlrichs
,
J. Chem. Phys.
104
,
9047
(
1996
).
43.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Chem. Phys. Lett.
288
,
593
(
1998
).
44.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
45.
P. R. T.
Schipper
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
111
,
4056
(
1999
).
46.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
);
[PubMed]
for a review see also:
T.
Grabo
,
T.
Kreibich
,
S.
Kurth
, and
E. K. U.
Gross
, in
Strong Coulomb Correlations in Electronic Structure: Beyond the LDA
, edited by
V. I.
Anisimov
(
Gordon and Breach
, New York,
1999
), p.
203
.
47.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
48.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
49.
C.-O.
Almbladh
,
U.
von Barth
, and
R.
van Leeuwen
,
Int. J. Mod. Phys. B
13
,
535
(
1999
).
50.
N. E.
Dahlen
and
U.
von Barth
,
J. Chem. Phys.
120
,
6826
(
2004
).
51.
L. J.
Holleboom
and
J. G.
Snijders
,
J. Chem. Phys.
93
,
5826
(
1990
).
52.
F.
Aryasetiawan
,
T.
Miyake
, and
K.
Terakura
,
Phys. Rev. Lett.
88
,
166401
(
2002
);
[PubMed]
F.
Aryasetiawan
,
T.
Miyake
, and
K.
Terakura
,
Phys. Rev. Lett.
90
,
189702
(
2003
).
[PubMed]
53.
M.
Fuchs
,
K.
Burke
,
Y.-M.
Niquet
, and
X.
Gonze
,
Phys. Rev. Lett.
90
,
189701
(
2003
).
54.
Y.-M.
Niquet
,
M.
Fuchs
, and
X.
Gonze
,
J. Chem. Phys.
118
,
9504
(
2003
).
55.
Y.-M.
Niquet
,
M.
Fuchs
, and
X.
Gonze
,
Phys. Rev. A
68
,
032507
(
2003
).
56.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3685
(
1996
).
58.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
59.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
60.
K.
Burke
,
M.
Ernzerhof
, and
J. P.
Perdew
,
Chem. Phys. Lett.
265
,
115
(
1997
).
61.
R.
van Leeuwen
, Ph.D. thesis,
Vrije Universiteit
,
1996
.
62.
O. V.
Gritensko
and
E. J.
Baerends
,
Phys. Rev. A
54
,
1957
(
1996
).
63.
We interpolate the (unknown) exact curve in λ[0,1] by ΔUXC(λ)=ΔEX+[ΔUXC(0)λp(λ)][1+αλp(λ)], where α=[ΔUXC(0)ΔUC][1p(1)]. Our interpolation reproduces ΔEX, ΔUXC(0), and ΔUXC as given in Tables I and II. For R=1.4bohr it integrates to ΔEXC=2.07eV, where we have set p(λ)1. For R=5bohr we have chosen p(λ)=1+βλeγλ, adjusting β and γ to yield ΔEXC=0.82eV and also the strong interaction limit of UXC[H2](λ) [
M.
Seidl
(private communication)].
64.
A.
Puzder
,
M. Y.
Chou
, and
R. Q.
Hood
,
Phys. Rev. A
64
,
022501
(
2001
).
65.
A.
Savin
,
F.
Colonna
, and
M.
Allavena
,
J. Chem. Phys.
115
,
6827
(
2001
).
66.
F.
Colonna
,
D.
Maynau
, and
A.
Savin
,
Phys. Rev. A
68
,
012505
(
2003
).
67.
R. Q.
Hood
,
M. Y.
Chou
,
A. J.
Williamson
,
G.
Rajagopal
, and
R. J.
Needs
,
Phys. Rev. B
57
,
8972
(
1998
).
68.
R. J.
Magyar
,
W.
Terilla
, and
K.
Burke
,
J. Chem. Phys.
119
,
696
(
2003
).
69.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. Lett.
84
,
5070
(
2000
).
70.
M.
Fuchs
and
X.
Gonze
(unpublished).
71.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
72.
M.
Fuchs
and
X.
Gonze
(unpublished).
73.
M.
Lein
,
E. K. U.
Gross
, and
J. P.
Perdew
,
Phys. Rev. B
61
,
13431
(
2000
).
74.
M. E.
Casida
, in
Recent Developments and Applications in Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
, Amsterdam
1996
).
75.
J. C.
Slater
,
Quantum Theory of Molecules and Solids
(
McGraw-Hill
, New York,
1963
), Vol.
1
, p.
60
.
76.
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
,
A.
Görling
, and
E. J.
Baerends
,
J. Chem. Phys.
113
,
8478
(
2000
).
77.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
78.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
 et al,
Comput. Mater. Sci.
25
,
478
(
2002
).
79.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
107
,
67
(
1999
).
80.
H.
Appel
,
E. K. U.
Gross
, and
K.
Burke
,
Phys. Rev. Lett.
90
,
043005
(
2003
).
81.
R.
van Leeuwen
(private communication).
You do not currently have access to this content.