The complete angular momentum distributions and vector correlation coefficients (orientation and alignment) of ground state I(P322) and excited state I(P122) atoms resulting from the photodissociation of HI have been computed as a function of photolysis energy. The orientation and alignment parameters aQ(K)(p) that describe the coherent and incoherent contributions to the angular momentum distributions from the multiple electronic states accessed by parallel and perpendicular transitions are determined using a time-dependent wave packet treatment of the dissociation dynamics. The dynamics are based on potential energy curves and transition dipole moments that have been reported previously [R. J. LeRoy, G. T. Kraemer, and S. Manzhos, J. Chem. Phys.117, 9353 (2002)] and used to successfully model the scalar (total cross section and branching fraction) and lowest order vector (anisotropy parameter β) properties of the photodissociation. Predictions of the aQ(K)(p), parameters for the isotopically substituted species DI are reported and contrasted to the analogous HI results. The resulting polarization for the corresponding H/D partners are also determined and demonstrate that both H and D atoms produced can be highly spin polarized. Comparison of these predictions for HI and DI with experimental measurement will provide the most stringent test of the current model for the electronic structure and the interpretation of the dissociation based on noncoupled excited state dynamics.

1.
J.
Romand
,
C. R. Acad. Sci.
227
,
117
(
1948
).
2.
W. C.
Price
,
Proc. R. Soc. London, Ser. A
London, Ser. A
167
,
216
(
1938
).
3.
S. G.
Tilford
,
M. L.
Ginter
, and
A. M.
Bass
,
J. Mol. Spectrosc.
34
,
327
(
1970
).
4.
J. F.
Ogilvie
,
Trans. Faraday Soc.
67
,
2205
(
1971
).
5.
S.
Manzhos
,
H. P.
Loock
,
B. L. G.
Bakker
, and
D. H.
Parker
,
J. Chem. Phys.
117
,
9347
(
2002
).
6.
P. M.
Regan
,
D.
Ascenzi
,
C.
Celmenti
,
M. N. R.
Ashfold
, and
A. J.
Orr-Ewing
,
Chem. Phys. Lett.
315
,
187
(
1999
).
7.
A. J. R.
Heck
and
D. W.
Chandler
,
Annu. Rev. Phys. Chem.
46
,
335
(
1995
).
8.
C. A.
Wight
and
S. R.
Leone
,
J. Chem. Phys.
79
,
4823
(
1983
).
9.
S. R.
Langford
,
P. M.
Regan
,
A. J.
Orr-Ewing
, and
M. N. R.
Ashfold
,
Chem. Phys.
231
,
245
(
1998
).
10.
D. J.
Gendron
and
J. W.
Hepburn
,
J. Chem. Phys.
109
,
7205
(
1998
).
11.
R. D.
Clear
,
S. J.
Riley
, and
K. R.
Wilson
,
J. Chem. Phys.
63
,
1340
(
1975
).
12.
G. N. A.
van Veen
,
K. A.
Mohamed
,
T.
Baller
, and
A. E.
deVries
,
Chem. Phys.
80
,
113
(
1983
).
13.
T. N.
Kitsopoulos
,
M. A.
Buntine
,
D. P.
Baldwin
,
R. N.
Zare
, and
D. W.
Chandler
,
Proc. SPIE
1858
,
2
(
1993
).
14.
Z.
Xu
,
B.
Koplitz
, and
C.
Wittig
,
J. Phys. Chem.
92
,
5518
(
1988
).
15.
R.
Schmiedl
,
H.
Dugan
,
W.
Meier
, and
K. H.
Welge
,
Z. Phys. A
304
,
137
(
1982
).
16.
R. S.
Mulliken
,
Phys. Rev.
51
,
310
(
1937
).
17.
R. J.
LeRoy
,
G. T.
Kraemer
, and
S.
Manzhos
,
J. Chem. Phys.
117
,
9353
(
2002
).
18.
A. B.
Alekseyev
,
H. P.
Liebermann
,
D. B.
Kokh
, and
R. J.
Buenker
,
J. Chem. Phys.
113
,
6174
(
2000
).
19.
I.
Levy
and
M.
Shapiro
,
J. Chem. Phys.
89
,
2900
(
1988
).
20.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
,
Chem. Phys. Lett.
118
,
192
(
1985
).
21.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
,
J. Chem. Phys.
87
,
5325
(
1987
).
22.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
,
Phys. Rev. A
38
,
6098
(
1988
).
23.
T. P.
Rakitzis
,
S. A.
Kandel
,
A. J.
Alexander
,
Z. H.
Kim
, and
R. N.
Zare
,
J. Chem. Phys.
110
,
3351
(
1999
).
24.
T. P.
Rakitzis
and
T. N.
Kitsopoulos
,
J. Chem. Phys.
116
,
9228
(
2002
).
25.
A. S.
Bracker
,
E. R.
Wouters
,
A. G.
Suits
, and
O. S.
Vasyutinskii
,
J. Chem. Phys.
110
,
6749
(
1999
).
26.
M. J.
Bass
,
M.
Brouard
,
A. P.
Clark
,
C.
Vallance
, and
B.
Martinez-Haya
,
Phys. Chem. Chem. Phys.
5
,
856
(
2003
).
27.
A. S.
Bracker
,
E. R.
Wouters
,
A. G.
Suits
,
Y. T.
Lee
, and
O. S.
Vasyutinskii
,
Phys. Rev. Lett.
80
,
1626
(
1998
).
28.
A. J.
Alexander
,
Z. H.
Kim
,
S. A.
Kandel
,
R. N.
Zare
,
Y.
Asano
, and
S.
Yabushita
,
J. Chem. Phys.
113
,
9022
(
2000
).
29.
T. P.
Rakitzis
,
P. C.
Samrtzis
,
R. L.
Toomes
 et al,
Chem. Phys. Lett.
364
,
115
(
2002
).
30.
T. P.
Rakitzis
,
P. C.
Samartzis
,
R. L.
Toomes
,
T. N.
Kitsopoulos
,
A.
Brown
,
G. G.
Balint-Kurti
,
O. S.
Vasyutinskii
, and
J. A.
Beswick
,
Science
300
,
1936
(
2003
).
31.
L. D. A.
Siebbeles
,
M.
Glass-Maujean
,
O. S.
Vasyutinskii
,
J. A.
Beswick
, and
O.
Roncero
,
J. Chem. Phys.
100
,
3610
(
1994
).
32.
T. P.
Rakitzis
and
R. N.
Zare
,
J. Chem. Phys.
110
,
3341
(
1999
).
33.
E. R.
Wouters
,
M.
Ahmed
,
D. S.
Peterska
,
A. S.
Bracker
,
A. G.
Suits
, and
O. S.
Vasyutinskii
, in
Imaging in Chemical Dynamics
, edited by
A. G.
Suits
and
R. E.
Continetti
(
American Chemical Society
, Washington, DC,
2000
), p.
238
.
34.
A.
Brown
,
G. G.
Balint-Kurti
, and
O. S.
Vasyutiniskii
,
J. Phys. Chem. A
108
,
7790
(
2004
).
35.
G. G.
Balint-Kurti
,
A. J.
Orr-Ewing
,
J. A.
Beswick
,
A.
Brown
, and
O. S.
Vasyutinskii
,
J. Chem. Phys.
116
,
10760
(
2002
).
36.
A.
Brown
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
113
,
1870
(
2001
).
37.
P. M.
Regan
,
D.
Ascenzi
,
A.
Brown
,
G. G.
Balint-Kurti
, and
A. J.
Orr-Ewing
,
J. Chem. Phys.
112
,
10259
(
2000
).
38.
C. E.
Moore
,
Atomic Energy Levels
(
U.S. GPO
, Washington, DC,
1971
).
39.
C. F.
Goodeve
and
A. W. C.
Taylor
,
Proc. R. Soc. London, Ser. A
London, Ser. A
154
,
181
(
1936
).
40.
J.
Romand
,
Ann. Phys. (Paris)
4
,
527
(
1948
).
41.
D. V.
Kupriayanov
,
B. N.
Sevastianov
, and
O. S.
Vasyutinskii
,
Z. Phys. D: At., Mol. Clusters
15
,
105
(
1990
).
42.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
Int. Rev. Phys. Chem.
11
,
317
(
1992
).
43.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
J. Chem. Soc., Faraday Trans.
86
,
1741
(
1990
).
44.
E. J.
Heller
,
J. Chem. Phys.
68
,
2066
(
1978
).
45.
E. J.
Heller
,
J. Chem. Phys.
68
,
3891
(
1978
).
46.
E. J.
Heller
,
Acc. Chem. Res.
14
,
368
(
1981
).
47.
G. G.
Balint-Kurti
,
Adv. Chem. Phys.
128
,
249
(
2003
).
48.
A.
Brown
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
113
,
1879
(
2001
).
49.
C. C.
Marston
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
91
,
3571
(
1989
).
50.
G. G.
Balint-Kurti
,
C. L.
Ward
, and
C. C.
Marston
,
Comput. Phys. Commun.
67
,
285
(
1991
).
51.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
52.
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
).
53.

Temperature dependent data at 10, 300, and 1000 K taken from EPAPS Document No. E-JCPSA6-117-002243.

54.
B. V.
Picheyev
,
A. G.
Smolin
, and
O. S.
Vasyutinskii
,
J. Phys. Chem. A
101
,
7614
(
1997
).
55.
K.
Blum
,
Density Matrix Theory and Applications
, 2nd ed. (
Plenum
, New York,
1990
).
56.
R. N.
Zare
,
Angular Momentum
(
World Scientific
, New York,
1988
).
57.
A. R.
Edmonds
,
Angular Momentum in Quantum Mechanics
(
Princeton University Press
, Princeton,
1960
).
58.
H.
Rottke
and
H.
Zacharias
,
Phys. Rev. A
33
,
736
(
1986
).
59.
W.
Happer
,
Rev. Mod. Phys.
44
,
169
(
1972
).
60.
See EPAPS Document No. E-JCPSA6-122-010507 for the numerical data contained in Figs. 6–9, i. e., the anisotropy parameters for I(P322), I(P122) and H/D produced from the photodissociation of HI and DI as a function of photolysis energy. A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory/epaps. See the EPAPS homepage for more information.
61.
A.
Brown
(unpublished).
62.
S. C.
Givertz
and
G. G.
Balint-Kurti
,
J. Chem. Soc., Faraday Trans. 2
82
,
1231
(
1986
).
63.
I. H.
Gersonde
,
S.
Henning
, and
H.
Gabriel
,
J. Chem. Phys.
101
,
9558
(
1994
).
64.
B.
Pouilly
and
M.
Monnerville
,
Chem. Phys.
238
,
437
(
1998
).
65.
C.
Kalyanaraman
and
N.
Sathyamurthy
,
Chem. Phys. Lett.
209
,
52
(
1993
).
66.
J. P.
Camden
,
H. A.
Bechtel
,
D. J. A.
Brown
,
A. E.
Pomerantz
,
R. N.
Zare
, and
R. J.
LeRoy
,
J. Phys. Chem. A
108
,
7806
(
2004
).

Supplementary Material

You do not currently have access to this content.