The temporal behavior of optical response functions (ORFs) reflects the quantum dynamics of an electronic superposition state, and as such lacks a well-defined classical limit. In this paper, we consider the importance of accounting for the quantum nature of the dynamics when calculating ORFs of different types. To this end, we calculated the ORFs associated with the linear absorption spectrum and the nonlinear two-pulse photon-echo experiment, via the following approaches: (1) the semiclassical forward-backward approach; (2) an approach based on linearizing the path-integral forward-backward action in terms of the difference between the forward and backward paths; (3) an approach based on ground state nuclear dynamics. The calculations were performed on a model that consists of a two-state chromophore solvated in a nonpolar liquid. The different methods were found to yield very similar results for the absorption spectrum and “diagonal” two-pulse photon echo (i.e., the homodyne-detected signal at time t=t0 after the second pulse, where t0 is the time interval between the two pulses). The different approximations yielded somewhat different results in the case of the time-integrated photon-echo signal. The reasons for the similarity between the predictions of different approximations are also discussed

1.
P.
Vöhringer
,
D. C.
Arnett
,
T.-S.
Yang
, and
N. F.
Scherer
,
Chem. Phys. Lett.
237
,
387
(
1995
).
2.
R. M.
Stratt
and
M.
Maroncelli
,
J. Phys. Chem.
100
,
12981
(
1996
).
3.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
, New York,
1995
).
4.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Annu. Rev. Phys. Chem.
49
,
99
(
1998
).
5.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
6.
7.
A. M.
Walsh
and
R. F.
Loring
,
Chem. Phys. Lett.
186
,
77
(
1991
).
8.
N. E.
Shemetulskis
and
R. F.
Loring
,
J. Chem. Phys.
97
,
1217
(
1992
).
9.
K. F.
Everitt
,
E.
Geva
, and
J. L.
Skinner
,
J. Chem. Phys.
114
,
1326
(
2001
).
10.
J. L.
Skinner
,
J. Chem. Phys.
77
,
3398
(
1982
).
11.
S.
Mukamel
,
J. Chem. Phys.
77
,
173
(
1982
).
12.
B. D.
Bursulaya
and
H. J.
Kim
,
J. Phys. Chem.
100
,
16451
(
1996
).
13.
M. D.
Stephens
,
J. G.
Saven
, and
J. L.
Skinner
,
J. Chem. Phys.
106
,
2129
(
1997
).
14.
J. G.
Saven
and
J. L.
Skinner
,
J. Chem. Phys.
99
,
4391
(
1993
).
15.
O.
Kühn
and
N.
Makri
,
J. Phys. Chem. A
103
,
9487
(
1999
).
16.
M.
Ovchinnikov
,
V. A.
Apkarian
, and
G. A.
Voth
,
J. Chem. Phys.
184
,
7130
(
2001
).
17.
L. E.
Fried
,
N. B.
Bernstein
, and
S.
Mukamel
,
Phys. Rev. Lett.
68
,
1842
(
1992
).
18.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
108
,
1407
(
1998
).
19.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
20.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9059
(
2003
).
21.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9070
(
2003
).
22.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
,
12179
(
2003
).
23.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
120
,
10647
(
2004
).
24.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
108
,
6109
(
2004
).
25.
S. A.
Egorov
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
110
,
5238
(
1999
).
26.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
27.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
28.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1981
).
29.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
30.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
31.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
32.
D.
Provost
and
P.
Brumer
,
Phys. Rev. Lett.
74
,
250
(
1995
).
33.
A. R.
Walton
and
D. E.
Manolopoalos
,
Mol. Phys.
87
,
961
(
1996
).
34.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
105
,
10312
(
1996
).
35.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
36.
M. A.
Sepúlveda
and
S.
Mukamel
,
J. Chem. Phys.
102
,
9327
(
1995
).
37.
M. A.
Sepúlveda
and
S.
Mukamel
,
Adv. Chem. Phys.
96
,
191
(
1996
).
38.
C. F.
Spencer
and
R. F.
Loring
,
J. Chem. Phys.
105
,
6596
(
1996
).
39.
S. A.
Pentidis
and
R. F.
Loring
,
Chem. Phys. Lett.
287
,
217
(
1998
).
40.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
108
,
2277
(
1998
).
41.
M.
Thoss
and
W. H.
Miller
,
J. Chem. Phys.
112
,
10282
(
2000
).
42.
H.
Wang
,
M.
Thoss
,
K.
Sorge
,
R.
Gelabert
,
X.
Gimenez
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
2562
(
2001
).
43.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
44.
M.
Ovchinnikov
and
V. A.
Apkarian
,
J. Chem. Phys.
106
,
5775
(
1997
).
45.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
46.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
47.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
13
,
1343
(
1999
).
48.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
49.
V. S.
Batista
,
M. T.
Zanni
,
B. Jefferys
Greenblatt
,
D. N.
Neumark
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
3736
(
1999
).
50.
E.
Rabani
,
S. A.
Egorov
, and
B. J.
Berne
,
J. Chem. Phys.
109
,
6376
(
1998
).
51.
J. R.
Klauder
and
P. W.
Anderson
,
Phys. Rev.
125
,
912
(
1962
).
52.
M.
Berg
,
C. A.
Walsh
,
L. R.
Narasimhan
,
K. A.
Litttau
, and
M. D.
Fayer
,
J. Chem. Phys.
88
,
1564
(
1988
).
53.
Y. S.
Bai
and
M. D.
Fayer
,
Phys. Rev. B
39
,
11066
(
1989
).
54.
A.
Suárez
and
R.
Silbey
,
Chem. Phys. Lett.
218
,
445
(
1994
).
55.
E.
Geva
and
J. L.
Skinner
,
J. Chem. Phys.
107
,
7630
(
1997
).
56.
E.
Rabani
,
S. A.
Egorov
, and
B. J.
Berne
,
J. Chem. Phys.
103
,
9539
(
1999
).
57.
T.
Kalbfleisch
,
R.
Fan
,
J.
Roebber
,
P.
Moore
,
E.
Jacobsen
, and
L. D.
Ziegler
,
J. Chem. Phys.
103
,
7673
(
1995
).
58.
L. E.
Fried
and
S.
Mukamel
,
Adv. Chem. Phys.
84
,
435
(
1993
).
59.
J. A.
Barker
,
D.
Henderson
, and
F. F.
Abraham
,
Physica A
106
,
226
(
1981
).
60.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1987
).
61.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
107
,
9514
(
1997
).
You do not currently have access to this content.