Comparison of properties of three domains of titin, I1, I27, and I28, in a simple geometry-based model shows that despite a high structural homology between their native states different domains show similar but distinguishable mechanical properties. Folding properties of the separate domains are predicted to be diversified which reflects sensitivity of the kinetics to the details of native structures. The Go-like model corresponding to the experimentally resolved native structure of the I1 domain is found to provide the biggest thermodynamic and mechanical stability compared to the other domains studied here. We analyze elastic, thermodynamic, and kinetic properties of several structures corresponding to the I28 domain as obtained through homology-based modeling. We discuss the ability of the models of the I28 domain to reproduce experimental results qualitatively. A strengthening of contacts that involve hydrophobic amino acids does not affect theoretical comparisons of the domains. Tandem linkages of up to five identical or different domains unravel in a serial fashion at low temperatures. We study the nature of the intermediate state that arises in the early stages of the serial unraveling and find it to qualitatively agree with the results of Marszalek et al.

1.
M.
Carrion-Vasquez
,
P. E.
Marszalek
,
A. F.
Oberhauser
, and
J. M.
Fernandez
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11288
(
1999
).
2.
M.
Carrion-Vazquez
,
A. F.
Oberhauser
,
T. E.
Fisher
,
P. E.
Marszalek
,
H.
Li
, and
J. M.
Fernandez
,
Prog. Biophys. Mol. Biol.
74
,
63
(
2000
).
3.
H.
Li
,
A. F.
Oberhauser
,
S. B.
Fowler
,
J.
Clarke
, and
J. M.
Fernandez
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
6527
(
2000
).
4.
K.
Maruyama
,
Biophys. Chem.
50
,
73
(
1994
).
5.
K.
Maruyama
,
FASEB J.
11
,
341
(
1997
).
6.
T. C. S.
Keller
,
Curr. Opin. Cell Biol.
7
,
32
(
1995
).
7.
J.
Trinick
,
Curr. Biol.
6
,
258
(
1996
).
8.
R.
Horowits
,
K.
Maruyama
, and
R. J.
Podolsky
,
J. Cell Biol.
109
,
2169
(
1989
).
9.
R.
Horowits
,
Biophys. J.
61
,
392
(
1992
).
10.
T.
Funatsu
,
E.
Kono
,
H.
Higuchi
et al.,
J. Cell Biol.
120
,
711
(
1993
).
11.
P. H.
Trombitas
,
W. W.
Baatsen
,
M. S. Z.
Kellermayer
, and
G. H.
Pollack
,
J. Cell Biol.
100
,
809
(
1991
).
12.
K.
Wang
,
R.
McCarter
,
J.
Wright
,
J.
Beverly
, and
R.
Ramirez-Mitchell
,
Proc. Natl. Acad. Sci. U.S.A.
88
,
7101
(
1991
).
13.
S.
Labeit
and
B.
Kolmerer
,
Science
270
,
293
(
1995
).
14.
W. A.
Linke
,
M.
Ivemeyer
,
M.
Olivieri
,
B.
Kolmerer
,
C.
Ruegg
, and
S.
Labeit
,
J. Mol. Biol.
261
,
62
(
1996
).
15.
W. A.
Linke
and
H.
Granzier
,
Biophys. J.
75
,
2613
(
1998
).
16.
S.
Improta
,
A. S.
Politou
, and
A.
Pastore
,
Structure (London)
4
,
323
(
1996
).
17.
A. S.
Politou
,
D. J.
Thomas
, and
A.
Pastore
,
Biophys. J.
69
,
2601
(
1995
).
18.
A. S.
Politou
,
M.
Gautel
,
S.
Improta
,
L.
Vangelista
, and
A.
Pastore
,
J. Mol. Biol.
255
,
604
(
1996
).
19.
S. B.
Fowler
and
J.
Clarke
,
Structure (London)
9
,
355
(
2001
).
20.
M.
Carrion-Vazquez
,
A. F.
Oberhauser
,
S. B.
Fowler
,
P. E.
Marszalek
,
S. E.
Broedel
,
J.
Clarke
, and
J. M.
Fernandez
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
3694
(
1999
).
21.
P. E.
Marszalek
,
H.
Lu
,
H. B.
Li
,
M.
Carrion-Vazquez
,
A. F.
Oberhauser
,
K.
Schulten
, and
J. M.
Fernandez
,
Nature (London)
402
,
100
(
1999
).
22.
R. B.
Best
,
B.
Li
,
A.
Steward
,
V.
Daggett
, and
J.
Clarke
,
Biophys. J.
81
,
2344
(
2001
).
23.
H.
Lu
and
K.
Schulten
,
Chem. Phys.
247
,
141
(
1999
).
24.
H.
Lu
and
K.
Schulten
,
Biophys. J.
79
,
51
(
2000
).
25.
E.
Paci
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
6521
(
2000
).
26.
D. K.
Klimov
and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
7254
(
2000
).
27.
M.
Cieplak
,
T. X.
Hoang
, and
M. O.
Robbins
,
Proteins
49
,
114
(
2002
).
28.
M.
Cieplak
,
T. X.
Hoang
, and
M. O.
Robbins
,
Phys. Rev. E
69
,
011912
(
2004
).
29.
M.
Cieplak
,
T. X.
Hoang
, and
M. O.
Robbins
,
Proteins: Struct., Funct., Bioinf.
56
,
285
(
2004
).
30.
H.
Abe
and
N.
Go
,
Biopolymers
20
,
1013
(
1981
).
31.
S.
Takada
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11698
(
1999
).
32.
F.
Fraternali
and
A.
Pastore
,
J. Mol. Biol.
290
,
581
(
1999
).
33.
O.
Mayans
,
J.
Wuerges
,
M.
Gautel
, and
M.
Wilmans
,
Structure (London)
9
,
331
(
2001
).
34.
F. C.
Bernstein
,
T. F.
Koetzle
,
G. J. B.
Williams
et al.,
J. Mol. Biol.
112
,
535
(
1997
).
35.
A.
Sali
and
T. L.
Blundell
,
J. Mol. Biol.
234
,
779
(
1993
).
36.
G.
Vriend
,
J. Mol. Graphics
8
,
52
(
1990
).
37.
N.
Guex
and
M. C.
Peitsch
,
Electrophoresis
18
,
2714
(
1997
).
38.
J. D.
Thompson
,
T. J.
Gibson
,
F.
Plewniak
,
F.
Jeanmougin
, and
D. G.
Higgins
,
Nucleic Acids Res.
25
,
4876
(
1997
).
39.
T. X.
Hoang
and
M.
Cieplak
,
J. Chem. Phys.
112
,
6851
(
2000
).
40.
T. X.
Hoang
and
M.
Cieplak
,
J. Chem. Phys.
113
,
8319
(
2001
).
41.
M.
Cieplak
and
T. X.
Hoang
,
Biophys. J.
84
,
475
(
2003
).
42.
M.
Cieplak
and
T. X.
Hoang
,
Int. J. Mod. Phys. C
13
,
1231
(
2002
).
43.
J.
Tsai
,
R.
Taylor
,
C.
Chothia
, and
M.
Gerstein
,
J. Mol. Biol.
290
,
253
(
1999
).
44.
M.
Cieplak
and
T. X.
Hoang
,
Physica A
330
,
195
(
2003
).
45.
J. I. Kwiecinska and M. Cieplak, J. Phys. Cond. Mat. (in press).
46.
T.
Veitshans
,
D.
Klimov
, and
D.
Thirumalai
,
Folding Des.
2
,
1
(
1997
).
47.
M.
Cieplak
,
T. X.
Hoang
, and
M. O.
Robbins
,
Proteins
49
,
104
(
2002
).
48.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
,
Science
276
,
1109
(
1997
).
49.
S. B.
Fowler
,
R. B.
Best
,
J. L. T.
Herrera
,
T. J.
Rutherford
,
A.
Steward
,
E.
Paci
,
M.
Karplus
, and
J.
Clarke
,
J. Mol. Biol.
322
,
841
(
2002
).
50.
J. F.
Marko
and
E. D.
Siggia
,
Macromolecules
28
,
8759
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.