Gaussian split Ewald (GSE) is a versatile Ewald mesh method that is fast and accurate when used with both real-space and k-space Poisson solvers. While real-space methods are known to be asymptotically superior to k-space methods in terms of both computational cost and parallelization efficiency, k-space methods such as smooth particle-mesh Ewald (SPME) have thus far remained dominant because they have been more efficient than existing real-space methods for simulations of typical systems in the size range of current practical interest. Real-space GSE, however, is approximately a factor of 2 faster than previously described real-space Ewald methods for the level of force accuracy typically required in biomolecular simulations, and is competitive with leading k-space methods even for systems of moderate size. Alternatively, GSE may be combined with a k-space Poisson solver, providing a conveniently tunable k-space method that performs comparably to SPME. The GSE method follows naturally from a uniform framework that we introduce to concisely describe the differences between existing Ewald mesh methods.

1.
C.
Sagui
and
T. A.
Darden
,
Annu. Rev. Biophys. Biomol. Struct.
28
,
155
(
1999
).
2.
P. P.
Ewald
,
Ann. Phys. (Leipzig)
64
,
253
(
1921
).
3.
H. G.
Petersen
,
S. W.
Deleeuw
, and
J. W.
Perram
,
Mol. Phys.
66
,
637
(
1989
).
4.
R. Hockney and J. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristol, 1988).
5.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
6.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
7.
C. L.
Brooks
,
B. M.
Pettitt
, and
M.
Karplus
,
J. Chem. Phys.
83
,
5897
(
1985
).
8.
J.
Norberg
and
L.
Nilsson
,
Biophys. J.
79
,
1537
(
2000
).
9.
P.
Mark
and
L.
Nilsson
,
J. Comput. Chem.
23
,
1211
(
2002
).
10.
M.
Patra
,
M.
Karttunen
,
M. T.
Hyvonen
,
E.
Falck
,
P.
Lindqvist
, and
I.
Vattulainen
,
Biophys. J.
84
,
3636
(
2003
).
11.
L.
Greengard
and
V.
Rokhlin
,
J. Comput. Phys.
73
,
325
(
1987
).
12.
J. V. L.
Beckers
,
C. P.
Lowe
, and
S. W.
De Leeuw
,
Mol. Simul.
20
,
369
(
1998
).
13.
C.
Sagui
and
T.
Darden
,
J. Chem. Phys.
114
,
6578
(
2001
).
14.
R. D.
Skeel
,
I.
Tezcan
, and
D. J.
Hardy
,
J. Comput. Chem.
23
,
673
(
2002
).
15.
D.
Wolf
,
P.
Keblinski
,
S. R.
Phillpot
, and
J.
Eggebrecht
,
J. Chem. Phys.
110
,
8254
(
1999
).
16.
A. C.
Maggs
and
V.
Rossetto
,
Phys. Rev. Lett.
88
,
196402
(
2002
).
17.
D.
York
and
W. T.
Yang
,
J. Chem. Phys.
101
,
3298
(
1994
).
18.
M.
Deserno
and
C.
Holm
,
J. Chem. Phys.
109
,
7678
(
1998
).
19.
M.
Deserno
and
C.
Holm
,
J. Chem. Phys.
109
,
7694
(
1998
).
20.
J. A. Izaguirre and T. Matthey (unpublished).
21.
D. M.
Heyes
,
J. Chem. Phys.
74
,
1924
(
1981
).
22.
P. F.
Batcho
,
D. A.
Case
, and
T.
Schlick
,
J. Chem. Phys.
115
,
4003
(
2001
).
23.
L. Collatz, The Numerical Treatment of Differential Equations (Springer, Berlin, 1960).
24.
T.
Kortemme
,
M.
Ramirez-Alvarado
, and
L.
Serrano
,
Science
281
,
253
(
1998
).
25.
H. J. C.
Berendsen
,
D.
Vanderspoel
, and
R.
Vandrunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
26.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model. [Electronic Publication]
7
,
306
(
2001
).
27.
R. H.
Zhou
,
E.
Harder
,
H. F.
Xu
, and
B. J.
Berne
,
J. Chem. Phys.
115
,
2348
(
2001
).
28.
C.
Sagui
,
L. G.
Pedersen
, and
T. A.
Darden
,
J. Chem. Phys.
120
,
73
(
2004
).
29.
A. W. Briggs, V. Henson, and S. McCormick, A Multigrid Tutorial (SIAM, Philadelphia, 2000).
30.
W. Hackbush and Trottenburg, Multigrid Methods (Springer, Berlin, 1982).
31.
R. E. Duke and L. G. Pedersen, PMEMD3, University of North Carolina, Chapel Hill, 2003.
32.
D. A. Case, D. A. Pearlman, J. W. Caldwell et al., AMBER7, University of California, San Francisco, 2002.
This content is only available via PDF.
You do not currently have access to this content.