Molecular dynamics simulations of vapor-phase nucleation of germanium in an argon atmosphere were performed and a unexpected channel of nucleation was observed. This channel, vapor-induced cluster splitting, is important for more refractory materials since the critical nucleus size can fall below the size of a dimer. As opposed to conventional direct vapor nucleation of the dimer, which occurs by three-body collisions, cluster-splitting nucleation is a second-order reaction. The most important cluster-splitting reaction is the collision of a vapor atom and a trimer that leads to the formation of two dimers. The importance of the cluster-splitting nucleation channel relative to the direct vapor nucleation channel is observed to increase with decreasing vapor density and increasing ratio of vapor to carrier gas atoms.

1.
C. G.
Granqvist
and
R. A.
Buhrman
,
J. Appl. Phys.
70
,
2200
(
1976
).
2.
J. M.
Soler
,
N.
Garcia
,
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
49
,
1857
(
1982
).
3.
N. P.
Rad
and
P. H.
McMurry
,
Aerosol Sci. Technol.
11
,
120
(
1989
).
4.
R. C.
Flagan
and
M. M.
Lunden
,
Mater. Sci. Eng., A
204
,
113
(
1995
).
5.
A.
Laaksonen
,
V.
Talanquer
, and
D. W.
Oxtoby
,
Annu. Rev. Phys. Chem.
46
,
489
(
1995
).
6.
W. H.
Zurek
and
W. C.
Schieve
,
J. Phys. Chem.
84
,
1479
(
1980
).
7.
D.
Lippmann
,
W. C.
Schieve
, and
C.
Canestaro
,
J. Chem. Phys.
81
,
4969
(
1984
).
8.
F. T.
Ferguson
,
J. Chem. Phys.
113
,
4093
(
2000
).
9.
K.
Yasuoka
and
M.
Matsumoto
,
J. Chem. Phys.
109
,
8451
(
1998
).
10.
A. A.
Lushnikov
and
M.
Kulmala
,
Phys. Rev. E
52
,
1658
(
1995
).
11.
A. A.
Lushnikov
and
M.
Kulmala
,
Phys. Rev. E
58
,
3157
(
1998
).
12.
K.
Laasonen
,
S.
Wonczak
,
R.
Strey
and
A.
Laasonen
,
J. Chem. Phys.
113
,
9741
(
2000
).
13.
D. I.
Zhukhovitskii
,
J. Chem. Phys.
103
,
9401
(
1995
).
14.
K.
Yasuoka
and
M.
Matsumoto
,
J. Chem. Phys.
109
,
8463
(
1998
).
15.
S.
Tanimura
,
K.
Yasuoka
, and
T.
Ebisuzaki
,
J. Chem. Phys.
112
,
3812
(
2000
).
16.
J. C.
Barrett
,
J. Chem. Phys.
116
,
8856
(
2002
).
17.
I.
Napari
,
H.
Vehkamaki
, and
K.
Laasonen
,
J. Chem. Phys.
120
,
165
(
2004
).
18.
P.
Krasnochtchekov
,
K.
Albe
, and
R. S.
Averback
,
Z. Metallkd.
94
,
1098
(
2003
).
19.
K.
Nordlund
,
M.
Ghaly
,
R. S.
Averback
,
M. Caturla T. Diaz
de la Rubia
, and
J.
Tarus
,
Phys. Rev. B
57
,
7556
(
1998
).
20.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
21.
K.
Nordlund
and
R. S.
Averback
,
J. Nucl. Mater.
276
,
194
(
2000
).
22.
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).
23.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
24.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
25.
S.
Weerasinghe
and
F. G.
Amar
,
J. Chem. Phys.
98
,
4967
(
1993
).
26.
P.
Schaaf
,
B.
Senger
,
J.-C.
Voegel
,
R. K.
Bowles
, and
H.
Reiss
,
J. Chem. Phys.
114
,
8091
(
2001
).
27.
J. W.
Brady
,
J. D.
Doll
, and
D. L.
Thompson
,
J. Chem. Phys.
71
,
2467
(
1979
).
28.
J. W.
Brady
,
J. D.
Doll
, and
D. L.
Thompson
,
J. Chem. Phys.
73
,
2767
(
1980
).
29.
R.
Venkatesh
,
R. R.
Lucchese
,
W. H.
Marlow
, and
J.
Schulte
,
J. Chem. Phys.
102
,
7683
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.