An accurate theoretical prediction of the vibrational spectra for a pure nitrogen ring (cyclic-N3) molecule is obtained up to the energy of the A22/B12 conical intersection. A coupled-channel approach using the hyperspherical coordinates and the recently published ab initio potential energy surface [D. Babikov, P. Zhang, and K. Morokuma, J. Chem. Phys. 121, 6743 (2004)] is employed. Two independent sets of calculations are reported: In the first set, the standard Born–Oppenheimer approximation is used and the geometric phase effects are totally neglected. In the second set, the generalized Born–Oppenhimer approximation is used and the geometric phase effects due to the D3h conical intersection are accurately treated. All vibrational states are analyzed and assigned in terms of the normal vibration mode quantum numbers. The magnitude of the geometric phase effect is determined for each state. One important finding is an unusually large magnitude of the geometric phase effects in the cyclic-N3: it is ∼100 cm−1 for the low-lying vibrational states and exceeds 600 cm−1 for several upper states. On average, this is almost two orders of magnitude larger than in the previously reported studies. This unique example suggests a favorable path to experimental validation.

1.
M.
Bittererova
,
H.
Ostmark
, and
T.
Brink
,
J. Chem. Phys.
116
,
9740
(
2002
).
2.
N.
Hansen
,
A. M.
Wodtke
,
A. V.
Komissarov
, and
M. C.
Heaven
,
Chem. Phys. Lett.
368
,
568
(
2002
).
3.
N.
Hansen
and
A. M.
Wodtke
,
J. Phys. Chem. A
107
,
10608
(
2003
).
4.
N.
Hansen
,
A. V.
Komissarov
,
K.
Morokuma
,
M. C.
Heaven
, and
A. M.
Wodtke
,
J. Chem. Phys.
118
,
10485
(
2003
).
5.
D.
Matsiev
,
J.
Chen
,
M.
Murphy
, and
A. M.
Wodtke
,
J. Chem. Phys.
118
,
9477
(
2003
).
6.
P. Zhang, K. Morokuma, and A. M. Wodtke, J. Chem. Phys. (to be published).
7.
D.
Babikov
,
P.
Zhang
, and
K.
Morokuma
,
J. Chem. Phys.
121
,
6743
(
2004
).
8.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
9.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
);
C. A.
Mead
,
J. Chem. Phys.
72
,
3839
(
1980
).
10.
C. A.
Mead
,
Chem. Phys.
49
,
23
(
1980
).
11.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
12.
F. S.
Ham
,
Phys. Rev. Lett.
58
,
725
(
1978
).
13.
M. C. M.
O’Brien
,
Proc. R. Soc. London, Ser. A
281
,
323
(
1964
).
14.
R. E.
Coffman
,
Phys. Rev. Lett.
19
,
475
(
1965
);
R. E.
Coffman
,
Phys. Rev. Lett.
21
,
381
(
1965
);
R. E.
Coffman
,
J. Chem. Phys.
48
,
609
(
1968
).
15.
H. C.
Longuet-Higgins
,
U.
Opik
,
M. H. L.
Pryce
, and
R. A.
Sack
,
Proc. R. Soc. London, Ser. A
224
,
1
(
1958
).
16.
W. H.
Gerber
and
E.
Schumacher
,
J. Chem. Phys.
69
,
1692
(
1978
).
17.
T. C.
Thompson
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
82
,
2392
(
1985
).
18.
D. G.
Truhlar
,
T. C.
Thompson
, and
C. A.
Mead
,
Chem. Phys. Lett.
127
,
287
(
1986
).
19.
B. K.
Kendrick
,
Phys. Rev. Lett.
79
,
2431
(
1997
).
20.
B. K.
Kendrick
,
Int. J. Quantum Chem.
64
,
581
(
1997
).
21.
H.
von Busch
,
V.
Dev
,
H. A.
Eckel
,
S.
Kasahara
,
J.
Wang
,
W.
Demtröder
,
P.
Sebald
, and
W.
Meyer
,
Phys. Rev. Lett.
81
,
4584
(
1998
).
22.
M.
Keil
,
H.-G.
Krämer
,
A.
Kudell
,
M. A.
Baig
,
J.
Zhu
,
W.
Demtröder
, and
W.
Meyer
,
J. Chem. Phys.
113
,
7414
(
2000
).
23.
M.
Mayer
and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
4938
(
1996
).
24.
R.
Meiswinkel
and
H.
Köppel
,
Chem. Phys.
144
,
177
(
1990
).
25.
J.
Schön
and
H.
Köppel
,
Chem. Phys. Lett.
231
,
55
(
1994
).
26.
J.
Schön
and
H.
Köppel
,
J. Chem. Phys.
103
,
9292
(
1995
).
27.
B.
Lepetit
and
A.
Kuppermann
,
Chem. Phys. Lett.
166
,
581
(
1990
).
28.
B. K.
Kendrick
,
J. Phys. Chem. A
107
,
6739
(
2003
).
29.
B. K. Kendrick, in Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, Geometric Phase Effects in Chemical Reaction Dynamics, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004).
30.
C. A.
Mead
,
Rev. Mod. Phys.
64
,
51
(
1992
).
31.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
32.
B. K.
Kendrick
and
R.
T Pack
,
J. Chem. Phys.
104
,
7475
(
1996
).
33.
B. K.
Kendrick
and
R.
T Pack
,
J. Chem. Phys.
104
,
7502
(
1996
).
34.
B. K.
Kendrick
and
R.
T Pack
,
J. Chem. Phys.
106
,
3519
(
1997
).
35.
B. K.
Kendrick
,
J. Chem. Phys.
112
,
5679
(
2000
);
B. K.
Kendrick
,
J. Chem. Phys.
114
,
4335
(E) (
2001
).
36.
B. K.
Kendrick
,
J. Chem. Phys.
118
,
10502
(
2003
).
37.
H.-J. Werner and P. J. Knowles, MOLPRO Version 2002.1, with contributions from R. D. Amos, A. Bernhardsson, A. Berning et al.
38.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
39.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
40.
R.
T Pack
and
G. A.
Parker
,
J. Chem. Phys.
87
,
3888
(
1987
).
41.
B. K.
Kendrick
,
R.
T Pack
,
R. B.
Walker
, and
E. F.
Hayes
,
J. Chem. Phys.
110
,
6673
(
1999
).
42.
C. de Boor, A Practical Guide to Splines (Springer, New York, 1978).
43.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
44.
A. W. Jasper, B. K. Kendrick, C. A. Mead, and D. G. Truhlar, in Modern Trends in Chemical Reaction Dynamics, Non-Born–Oppenheimer Chemistry: Potential Surfaces, Couplings and Dynamics, edited by X. Yang and K. Liu (World Scientific, Singapore, 2004).
45.
B. R.
Johnson
,
J. Chem. Phys.
67
,
4086
(
1977
);
B. R.
Johnson
,
J. Chem. Phys.
68
,
4678
(
1978
).
46.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.