We study the polydisperse Baxter model of sticky hard spheres (SHS) in the modified mean spherical approximation (mMSA). This closure is known to be the zero-order approximation C0 of the Percus-Yevick closure in a density expansion. The simplicity of the closure allows a full analytical study of the model. In particular we study stability boundaries, the percolation threshold, and the gas-liquid coexistence curves. Various possible subcases of the model are treated in details. Although the detailed behavior depends upon the particularly chosen case, we find that, in general, polydispersity inhibits instabilities, increases the extent of the nonpercolating phase, and diminishes the size of the gas-liquid coexistence region. We also consider the first-order improvement of the mMSA (C0) closure (C1) and compare the percolation and gas-liquid boundaries for the one-component system with recent Monte Carlo simulations. Our results provide a qualitative understanding of the effect of polydispersity on SHS models and are expected to shed new light on the applicability of SHS models for colloidal mixtures.

1.
H.
Löwen
,
Phys. Rep.
237
,
249
(
1994
).
2.
S. H.
Chen
,
J.
Rouch
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
6
,
10855
(
1994
).
3.
R. J.
Baxter
,
J. Chem. Phys.
49
,
2770
(
1968
).
4.
R. O.
Watts
,
D.
Henderson
, and
R. J.
Baxter
,
Adv. Chem. Phys.
21
,
421
(
1971
).
5.
B.
Barboy
and
R.
Tenne
,
Chem. Phys.
38
,
369
(
1979
).
6.
Strictly speaking we should distinguish between discrete polydispersity (multicomponent mixture with a large number of components p≈102–103) and a continuous polydispersity corresponding to p→∞ with a continuous distribution of sizes or other properties. This distinction will be specified in more details in Sec. VI.
7.
G.
Stell
,
J. Stat. Phys.
63
,
1203
(
1991
).
8.
D.
Gazzillo
and
A.
Giacometti
,
J. Chem. Phys.
120
,
4742
(
2004
).
9.
D.
Gazzillo
and
A.
Giacometti
,
J. Chem. Phys.
113
,
9837
(
2000
).
10.
D.
Gazzillo
and
A.
Giacometti
,
Mol. Phys.
101
,
2171
(
2003
).
11.
M. A.
Miller
and
D.
Frenkel
,
Phys. Rev. Lett.
90
,
135702
(
2003
).
12.
M. A.
Miller
and
D.
Frenkel
,
J. Chem. Phys.
121
,
535
(
2004
).
13.
C.
Tutschka
and
G.
Kahl
,
J. Chem. Phys.
108
,
9498
(
1998
).
14.
A.
Coniglio
,
U.
De Angelis
, and
A.
Forlani
,
J. Phys. A
10
,
1123
(
1977
).
15.
Y. C.
Chiew
and
E. D.
Glandt
,
J. Phys. A
16
,
2599
(
1983
).
16.
Y. C.
Chiew
and
E. D.
Glandt
,
J. Phys. A
22
,
3969
(
1989
).
17.
P.
Sollich
,
J. Phys.: Condens. Matter
14
,
R79
(
2002
).
18.
L.
Bellier-Castella
,
H.
Xu
, and
M.
Baus
,
J. Chem. Phys.
113
,
8337
(
2000
).
19.
Y. V.
Kalyuzhnyi
and
G.
Kahl
,
J. Chem. Phys.
119
,
7335
(
2003
).
20.
Y. V.
Kalyuzhnyi
,
G.
Kahl
, and
P. T.
Cummings
,
J. Chem. Phys.
120
,
10133
(
2004
).
21.
J. W.
Perram
and
E. R.
Smith
,
Chem. Phys. Lett.
35
,
138
(
1975
).
22.
Here, for simplicity, we disregard possible complicancies arising from the fact that unphysically large particles are included in this analysis. These were discussed in Ref. 19.
23.
A. B.
Bhatia
and
D. E.
Thornton
,
Phys. Rev. B
2
,
3004
(
1970
).
24.
D.
Gazzillo
,
Mol. Phys.
83
,
1171
(
1994
).
25.
D.
Gazzillo
,
Mol. Phys.
84
,
303
(
1995
).
26.
N. W.
Ashcroft
and
D. C.
Langreth
,
Phys. Rev.
156
,
685
(
1967
).
27.
B.
Barboy
,
Chem. Phys.
11
,
357
(
1975
).
28.
T. L.
Hill
,
J. Chem. Phys.
23
,
617
(
1955
).
29.
In this respect both C0 and C1 would be more precise than the PY closure and this is a remarkable feature.
30.
Even though it may happen that one has loss of solution of ixiai2 for certain values of the density, as occurs for the Percus-Yevick closure (Ref. 3).
31.
T.
Boublı́k
,
J. Chem. Phys.
53
,
471
(
1970
).
32.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
54
,
1523
(
1971
).
33.
J. J.
Salacuse
and
G.
Stell
,
J. Chem. Phys.
77
,
3714
(
1982
).
34.
X. S.
Chen
and
F.
Forstmann
,
J. Chem. Phys.
97
,
3696
(
1992
).
35.
R. J.
Baxter
,
J. Chem. Phys.
52
,
4559
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.