Approximations to the Breit-Pauli form of the spin-orbit coupling (SOC) operator are examined. The focus is on approximations that lead to an effective quasi-one-electron operator which leads to efficient property evaluations. In particular, the accurate spin-orbit mean-field (SOMF) method developed by Hess, Marian, Wahlgren, and Gropen is examined in detail. It is compared in detail with the “effective potential” spin-orbit operator commonly used in density functional theory (DFT) and which has been criticized for not including the spin-other orbit (SOO) contribution. Both operators contain identical one-electron and Coulomb terms since the SOO contribution to the Coulomb term vanishes exactly in the SOMF treatment. Since the DFT correlation functional only contributes negligibly to the SOC the only difference between the two operators is in the exchange part. In the SOMF approximation, the SOO part is equal to two times the spin-same orbit contribution. The DFT exchange contribution is of the wrong sign and numerically shown to be in error by a factor of 2–2.5 in magnitude. The simplest possible improvement in the DFT-SOC treatment [Veff(-2X)-SOC] is to multiply the exchange contribution to the Veff operator by −2. This is verified numerically in calculations of molecular g-tensors and one-electron SOC constants of atoms and ions. Four different ways of handling the computationally critical Coulomb part of the SOMF and Veff operators are discussed and implemented. The resolution of the identity approximation is virtually exact for the SOC with standard auxiliary basis sets which need to be slightly augmented by steep s functions for heavier elements. An almost as efficient seminumerical approximation is equally accurate. The effective nuclear charge model gives results within ∼10% (on average) of the SOMF treatment. The one-center approximation to the Coulomb and one-electron SOC terms leads to errors on the order of ∼5%. Small absolute errors are obtained for the one-center approximation to the exchange term which is consequently the method of choice [SOMF(1X)] for large molecules.

1.
M. Kaupp, V. G. Malkin, and O. L. Malkina, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998).
2.
A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).
3.
J. S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, Cambridge, 1964).
4.
F. Neese and E. I. Solomon, in Magnetoscience-From Molecules to Materials edited by M. Drillon and J. S. Miller (Wiley, New York, 2003), Vol. 4, p. 345.
5.
S. D. Peyerimhoff, in Encyclopedia Computation Chemistry, edited by P. v. R. Schleyer, N. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998), p. 2646.
6.
F.
Neese
and
E. I.
Solomon
,
Inorg. Chem.
38
,
1847
(
1999
).
7.
O. Kahn, Molecular Magnetism (VCH, New York, 1993).
8.
H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).
9.
G.
Breit
,
Phys. Rev.
34
,
553
(
1929
);
G.
Breit
,
Phys. Rev.
36
,
363
(
1930
);
G.
Breit
,
Phys. Rev.
39
,
616
(
1932
).
10.
J. C. Slater, The Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960), Vol. 2.
11.
M.
Blume
and
R. E.
Watson
,
Proc. R. Soc. London, Ser. A
270
,
127
(
1962
).
12.
M.
Blume
and
R. E.
Watson
,
Proc. R. Soc. London, Ser. A
271
,
565
(
1963
);
M.
Blume
,
A. J.
Freeman
, and
R. E.
Watson
,
Phys. Rev. A
134
,
320
(
1964
).
13.
H.
Horie
,
Prog. Theor. Phys.
10
,
296
(
1953
).
14.
J. P.
Elliot
,
Proc. R. Soc. London, Ser. A
218
,
345
(
1953
).
15.
E. U. Condon and G. H. Shortly, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1963).
16.
R.
Pasternak
and
G.
Wagniere
,
J. Comput. Chem.
2
,
347
(
1981
);
R.
Manne
and
M. C.
Zerner
,
Int. J. Quantum Chem., Symp.
19
,
165
(
1986
);
M.
Kotzian
,
N.
Rösch
, and
M. C.
Zerner
,
Int. J. Quantum Chem., Symp.
25
,
545
(
1991
);
M.
Böckmann
,
M.
Klessinger
, and
M. C.
Zerner
,
J. Phys. Chem.
100
,
10570
(
1996
);
F.
Neese
and
E. I.
Solomon
,
Inorg. Chem.
37
,
6568
(
1998
);
Y. H.
Hsiao
and
M. C.
Zerner
,
Int. J. Quantum Chem.
75
,
577
(
1999
);
J.
Mählmann
and
M.
Klessinger
,
Int. J. Quantum Chem.
77
,
446
(
2000
);
F.
Neese
,
Int. J. Quantum Chem.
83
,
104
(
2001
).
17.
S.
Koseki
,
M. S.
Gordon
,
M. W.
Schmidt
, and
N.
Matsunaga
,
J. Phys. Chem.
99
,
12764
(
1995
);
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Phys. Chem.
96
,
10768
(
1992
);
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Phys. Chem. A
102
,
10430
(
1998
).
18.
B. A. Hess and C. M. Marian, in Computational Molecular Spectroscopy, edited by P. Jensen and P. R. Bunker (Wiley, New York, 2000), p. 169ff.
19.
Y. S.
Lee
,
W. C.
Ermler
, and
K. S.
Pitzer
,
J. Chem. Phys.
67
,
5861
(
1977
);
R. M.
Pitzer
and
N. W.
Winter
,
J. Chem. Phys.
89
,
446
(
1988
);
L.
Pacios
and
J.
Christiansen
,
J. Chem. Phys.
82
,
2664
(
1985
);
P.
Hafner
and
W. H. E.
Schwarz
,
J. Phys. B
11
,
217
(
1977
);
D. G.
Fedorov
and
M.
Klobukowski
,
Chem. Phys. Lett.
360
,
223
(
2002
).
20.
T. E. H.
Walker
and
W. G.
Richards
,
J. Chem. Phys.
52
,
1311
(
1970
);
P. W.
Abegg
and
T.-K.
Ha
,
Mol. Phys.
27
,
763
(
1974
);
J.
Breulet
,
J. Comput. Chem.
2
,
244
(
1981
).
21.
D. G.
Fedorov
and
M. S.
Gordon
,
J. Chem. Phys.
112
,
5611
(
1999
).
22.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J. A.
Jensen
,
T.
Helgaker
, and
J.
Olsen
,
J. Chem. Phys.
96
,
2118
(
1992
).
23.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J. A.
Jensen
,
S. B.
Padkjaer
, and
T.
Helgaker
,
J. Chem. Phys.
96
,
6120
(
1992
);
H.
Ågren
,
O.
Vahtras
, and
B.
Minaev
,
Adv. Quantum Chem.
27
,
71
(
1996
);
J.
Vaara
,
K.
Ruud
,
O.
Vahtras
,
H.
Ågren
, and
J.
Jokisaari
,
J. Chem. Phys.
109
,
1212
(
1998
);
J.
Vaara
,
K.
Ruud
, and
O.
Vahtras
,
J. Chem. Phys.
111
,
2900
(
1999
).
24.
M.
Engström
,
B.
Minaev
,
O.
Vahtras
, and
H.
Ågren
,
Chem. Phys.
237
,
149
(
1998
).
25.
B. A. Hess, C. M. Marian, and S. D. Peyerimhoff, in Modern Electronic Structure Theory, edited by D. Yarkony (World Scientific, Singapore, 1995).
26.
M. Peric, B. Engels, and S. D. Peyerimhoff, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S. R. Langhoff (Kluwer Academic, Amsterdam, 1995), p. 261.
27.
C. M. Marian, in Reviews in Computational Chemistry edited by K. B. Lipkowitz and D. B. Boyd (Wiley-VCH, New York, 2001), Vol. 17.
28.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys. Lett.
257
,
157
(
1996
);
R. J.
Buenker
,
A. B.
Alekseyev
,
H.-P.
Liebermann
,
R.
Lingott
, and
G.
Hirsch
,
J. Chem. Phys.
108
,
3400
(
1998
).
29.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
30.
C. M.
Marian
and
U.
Wahlgren
,
Chem. Phys. Lett.
251
,
357
(
1996
).
31.
B.
Schimmelpfennig
,
L.
Maron
,
U.
Wahlgren
,
C.
Teichteil
,
H.
Fagerli
, and
O.
Gropen
,
Chem. Phys. Lett.
286
,
261
(
1998
);
B.
Schimmelpfennig
,
L.
Maron
,
U.
Wahlgren
,
C.
Teichteil
,
H.
Fagerli
, and
O.
Gropen
,
Chem. Phys. Lett.
286
,
267
(
1998
);
O.
Launilla
,
B.
Schimmelpfennig
,
H.
Fagerli
,
O.
Gropen
,
A. G.
Taklif
, and
U.
Wahlgren
,
J. Mol. Spectrosc.
186
,
131
(
1997
);
U.
Wahlgren
,
M.
Sjøvoll
,
H.
Fagerli
,
O.
Gropen
, and
B.
Schimmelpfennig
,
Theor. Chem. Acc.
97
,
324
(
1997
).
32.
A.
Berning
,
M.
Schweizer
,
H. J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
33.
B. Schimmelpfennig, AMFI-An Atomic Mean Field Integral Program (University of Stockholm, Stockholm, Sweden, 1996).
34.
O. L.
Malkina
,
B.
Schimmelpfennig
,
M.
Kaupp
,
B. A.
Hess
,
P.
Chandra
,
U.
Wahlgren
, and
V. G.
Malkin
,
Chem. Phys. Lett.
296
,
93
(
1998
);
K.
Ruud
,
B.
Schimmelpfennig
, and
H.
Ågren
,
Chem. Phys. Lett.
310
,
215
(
1999
);
L.
Gagliardi
,
B.
Schimmelpfennig
,
L.
Maron
,
U.
Wahlgren
, and
A.
Willets
,
Chem. Phys. Lett.
344
,
207
(
2001
);
P. Å.
Malmquvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
,
Chem. Phys. Lett.
357
,
230
(
2002
);
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
,
J. Comput. Chem.
23
,
824
(
2002
);
A. V.
Arbuznikov
,
J.
Vaara
, and
M.
Kaupp
,
J. Chem. Phys.
120
,
2127
(
2002
).
35.
O. L.
Malkina
,
J.
Vaara
,
B.
Schimmelpfenning
,
M.
Munzarová
,
V.
Malkin
, and
M.
Kaupp
,
J. Am. Chem. Soc.
122
,
9206
(
2000
).
36.
Z.
Rinkevicius
,
L.
Telyatnyk
,
P.
Salek
,
O.
Vahtras
, and
H.
Ågren
,
J. Chem. Phys.
119
,
10489
(
2003
).
37.
T.
Nakajima
,
T.
Yanai
, and
K.
Hirao
,
J. Comput. Chem.
25
,
847
(
2002
);
F.
Wang
and
L.
Li
,
J. Comput. Chem.
23
,
920
(
2002
);
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
);
W.
Klopper
,
J.
van Lenthe
, and
A. C.
Hennum
,
J. Chem. Phys.
113
,
9957
(
2000
);
S.
Faas
,
J.
van Lenthe
,
A. C.
Hennum
, and
J. G.
Snijders
,
J. Chem. Phys.
113
,
4052
(
2000
);
M.
Mayer
,
S.
Kröger
, and
N.
Rösch
,
J. Chem. Phys.
115
,
4411
(
2001
);
C.
van Wüllen
,
J. Comput. Chem.
23
,
779
(
2002
).
38.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
39.
W.
Pauli
,
Z. Phys.
43
,
601
(
1927
).
40.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem. A
101
,
3388
(
1997
).
41.
M. R.
Pederson
and
S. N.
Khanna
,
Phys. Rev. B
60
,
9566
(
1999
).
42.
S. Patchkovskii and G. Schreckenbach, in Calculation of NMR and EPR Parameters, edited by M. Kaupp, M. Bühl, and V. Malkin (Wiley-VCH, Weinheim, 2004), p. 505.
43.
C. J.
Pickard
and
F.
Mauri
,
Phys. Rev. Lett.
88
,
086403
(
2002
).
44.
F. Neese, ORCA-An ab initio, Density Functional and Semiempirical Program Package, Version 2.4, Revision 10 (Max Planck Institut für Bioanorganische Chemie, Mülheim, 2004).
45.
T. Helgaker and P. R. Taylor, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 725.
46.
B. Schimmelpfennig (private communication).
47.
J. Tatchen, Diploma thesis, Universität Bonn, 1999.
48.
J.
Tatchen
and
C. M.
Marian
,
Chem. Phys. Lett.
313
,
351
(
1999
).
49.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
);
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
);
O.
Vahtras
,
J.
Almlüf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
50.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
);
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
51.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
104
,
2620
(
1996
);
Y.
Shao
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
415
(
2000
);
F.
Neese
,
J. Comput. Chem.
24
,
1740
(
2003
).
52.
F.
Neese
and
G.
Olbrich
,
Chem. Phys. Lett.
362
,
170
(
2002
).
53.
F.
Neese
,
J. Chem. Phys.
115
,
11080
(
2001
).
54.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
55.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
);
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
56.
K. K.
Stavrev
and
M. C.
Zerner
,
Int. J. Quantum Chem.
65
,
877
(
1997
).
57.
E.
Schwegler
and
M.
Challacombe
,
J. Chem. Phys.
106
,
5526
(
1997
);
C.
Ochsenfeld
,
J. Chem. Phys.
109
,
1663
(
1998
).
58.
F.
Neese
,
J. Phys. Chem. A
105
,
4290
(
2001
);
F.
Neese
,
J. Chem. Phys.
118
,
3939
(
2003
);
F.
Neese
,
Mag. Res. Chem.
42
,
S187
(
2004
).
59.
F.
Neese
,
Chem. Phys. Lett.
380
,
721
(
2003
).
60.
S.
Brownridge
,
F.
Grein
,
J.
Tatchen
,
M.
Kleinschmidt
, and
C. M.
Marian
,
J. Chem. Phys.
118
,
9552
(
2003
).
61.
J. Gauss and F. Neese (unpublished).
62.
J.
Bendix
,
M.
Brorson
, and
C. E.
Schäffer
,
Inorg. Chem.
32
,
2838
(
1993
).
63.
The exponents of the s-type Gaussians in the fit set were determined as described in the DeMon2k users manual http://www.deMon-software.com/. One steeper s function was added by doubling the exponent of the steepest s function in the original fit set.
64.
K. G.
Dyall
and
E.
van Lenthe
,
J. Chem. Phys.
111
,
1366
(
1999
).
65.
R.
Ditchfield
,
Mol. Phys.
27
,
789
(
1974
).
66.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
67.
S.
Patchkovskii
and
T.
Ziegler
,
J. Phys. Chem. A
105
,
5490
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.