A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described.

1.
F. Jensen, Introduction to Computational Chemistry (Wiley, New York, 1999).
2.
D. M.
Bishop
,
Adv. Quantum Chem.
25
,
1
(
1994
).
3.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
4.
E. K. U.
Gross
and
W.
Kohn
,
Adv. Quantum Chem.
21
,
255
(
1990
).
5.
R.
van Leeuwen
,
Int. J. Mod. Phys. B
15
,
1969
(
2001
).
6.
M. E. Casida, in Recent Advances in Density-Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), p. 155.
7.
M. E. Casida, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).
8.
S. J. A.
van Gisbergen
,
V. P.
Osinga
,
O. V.
Gritsenko
,
R.
van Leeuwen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
3142
(
1996
).
9.
M. E.
Casida
,
C.
Jamorski
,
M. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
10.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
11.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
12.
M. E.
Casida
and
D. R.
Salahub
,
J. Chem. Phys.
113
,
8918
(
2000
).
13.
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
114
,
652
(
2001
).
14.
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
9591
(
2002
).
15.
J.-I.
Iwata
,
K.
Yabana
, and
G. F.
Bertsch
,
J. Chem. Phys.
115
,
8773
(
2001
).
16.
H. H.
Heinze
,
F. D.
Sala
, and
A.
Görling
,
J. Chem. Phys.
116
,
9624
(
2002
).
17.
P.
Salek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
,
J. Chem. Phys.
117
,
9630
(
2002
).
18.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
118
,
514
(
2003
).
19.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
119
,
3800
(
2003
).
20.
L.
Jensen
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Chem. Phys.
119
,
12998
(
2003
).
21.
L.
Bernasconi
,
M.
Sprik
, and
J.
Hutter
,
J. Chem. Phys.
119
,
12417
(
2003
).
22.
D.
Sebastiani
and
U.
Rothlisberger
,
J. Phys. Chem. B
108
,
2807
(
2004
).
23.
M.
Sulpizi
,
P.
Carloni
,
J.
Hutter
, and
U.
Rothlisberger
,
Phys. Chem. Chem. Phys.
5
,
4798
(
2003
).
24.
U. F. Röhrig, I. Frank, J. Hutter, A. Laio, J. Vande Vondele, and U. Rothlisberger, Chem. Phys. Chem. 4, 1177 (2003).
25.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Phys. Chem. A
104
,
5631
(
2000
).
26.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
330
,
152
(
2000
).
27.
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
115
,
4708
(
2001
).
28.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
29.
B. T.
Thole
and
P. T.
van Duijnen
,
Theor. Chim. Acta
55
,
307
(
1980
).
30.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
31.
P. A.
Bash
,
M. J.
Field
, and
M.
Karplus
,
J. Am. Chem. Soc.
109
,
8092
(
1987
).
32.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
33.
V.
Luzhkov
and
A.
Warshel
,
J. Comput. Chem.
13
,
199
(
1992
).
34.
R. V.
Stanton
,
D. S.
Hartsough
, and
K. M.
Merz
,
J. Phys. Chem.
97
,
11868
(
1993
).
35.
A. H.
de Vries
,
P. T.
van Duijnen
,
A. H.
Juffer
,
J. A. C.
Rullmann
,
J. P.
Dijkman
,
H.
Merenga
, and
B. T.
Thole
,
J. Comput. Chem.
16
,
37
(
1995
).
36.
I.
Tuñón
,
M. T. C.
Martins-Costa
,
C.
Millot
,
M. F.
Ruiz-López
, and
J. L.
Rivail
,
J. Comput. Chem.
17
,
19
(
1996
).
37.
J. Gao, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1995), Vol. 7, pp. 119–185.
38.
J.
Gao
,
Acc. Chem. Res.
29
,
298
(
1996
).
39.
Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Symposium Series, Vol. 712, edited by J. Gao and M. A. Thompson (American Chemical Society, Washington, D.C., 1998).
40.
H.
Reis
,
M. G.
Papadopoulos
,
C.
Hättig
,
J. G.
Ángyán
, and
R. W.
Munn
,
J. Chem. Phys.
112
,
6161
(
2000
).
41.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Mol. Struct.: THEOCHEM
632
,
207
(
2003
).
42.
B. T.
Thole
,
Chem. Phys.
59
,
341
(
1981
).
43.
L.
Jensen
,
P.-O.
Åstrand
,
A.
Osted
,
J.
Kongsted
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
116
,
4001
(
2002
).
44.
R.
Wortmann
and
D. M.
Bishop
,
J. Chem. Phys.
108
,
1001
(
1998
).
45.
H.
Reis
,
M. G.
Papadopoulos
, and
D. N.
Theodorou
,
J. Chem. Phys.
114
,
876
(
2001
).
46.
H.
Reis
,
M. G.
Papadopoulos
, and
A.
Avramopoulos
,
J. Phys. Chem. A
107
,
3907
(
2003
).
47.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Phys. Chem. A
104
,
4690
(
2000
).
48.
R. W.
Munn
,
Y.
Luo
,
P.
Macák
, and
H.
Ågren
,
J. Chem. Phys.
114
,
3105
(
2001
).
49.
L.
Jensen
,
P.-O.
Åstrand
, and
K. V.
Mikkelsen
,
J. Phys. Chem. B
108
,
8226
(
2004
).
50.
P. T.
van Duijnen
,
A. H.
de Vries
,
M.
Swart
, and
F.
Grozema
,
J. Chem. Phys.
117
,
8442
(
2002
).
51.
A.
Willetts
,
J. E.
Rice
,
D. M.
Burland
, and
D.
Shelton
,
J. Chem. Phys.
97
,
7590
(
1992
).
52.
R. W. Boyd, Nonlinear Optics (Academic, San Diego, 1992).
53.
P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
54.
B. J.
Orr
and
J. F.
Ward
,
Mol. Phys.
20
,
513
(
1971
).
55.
D. P.
Shelton
and
J. E.
Rice
,
Chem. Rev. (Washington, D.C.)
94
,
3
(
1994
).
56.
H. A. Lorentz, The Theory of Electrons, 1st ed. (B. G. Teubner, Leipzig, 1909).
57.
C. J. F. Böttcher, Theory of Electric Polarization, 2nd ed. (Elsevier, Amsterdam, 1973), Vol. 1.
58.
P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, 1st ed. (Cambridge University Press, Cambridge, 1990).
59.
L.
Onsager
,
J. Am. Chem. Soc.
58
,
1486
(
1936
).
60.
D. M.
Bishop
,
Rev. Mod. Phys.
62
,
343
(
1990
).
61.
J. D. Jackson, Classical Electrodynamics, 2nd ed. (J. Wiley, New York, 1975).
62.
P. T.
van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
(
1998
).
63.
L.
Jensen
,
P.-O.
Åstrand
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
J. Phys. Chem. A
104
,
1563
(
2000
).
64.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
65.
ADF 2002.03, http://www.scm.com (2003).
66.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
Comput. Phys. Commun.
118
,
119
(
1999
).
67.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
(
1995
).
68.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
109
,
10644
(
1998
).
69.
D. P.
Chong
,
M.
Grüning
, and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1582
(
2003
).
70.
D. P.
Chong
,
O. V.
Grtisenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
71.
M. Swart and P. T. van Duijnen, J. Comput. Chem. (to be published).
72.
A. H.
de Vries
,
P. T.
van Duijnen
,
R. W.
Zijlstra
, and
M.
Swart
,
J. Electron Spectrosc. Relat. Phenom.
86
,
49
(
1997
).
73.
P. T.
van Duijnen
and
A. H.
de Vries
,
Int. J. Quantum Chem.
60
,
1111
(
1996
).
74.
P. T.
van Duijnen
,
F. C.
Grozema
, and
M.
Swart
,
J. Mol. Struct.: THEOCHEM
464
,
193
(
1999
).
75.
S.
Toxvaerd
,
Mol. Phys.
72
,
159
(
1991
).
76.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).
77.
M.
Swart
,
P. T.
van Duijnen
, and
J. G.
Snijders
,
J. Comput. Chem.
22
,
79
(
2001
).
78.
J.
Caldwell
,
L. X.
Dang
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
112
,
9144
(
1990
).
79.
T.
Simonson
,
Chem. Phys. Lett.
250
,
450
(
1996
).
80.
F.
Kajzar
and
J.
Messier
,
Phys. Rev. A
32
,
2352
(
1985
).
81.
I.
Thormahlen
,
J.
Straub
, and
U.
Grigul
,
J. Phys. Chem. Ref. Data
14
,
933
(
1985
).
82.
M.
Stähelin
,
C. R.
Moylan
,
D. M.
Burland
,
A.
Willets
,
J. E.
Rice
,
D. P.
Shelton
, and
E. A.
Donley
,
J. Chem. Phys.
98
,
5595
(
1993
).
83.
G. R.
Meredith
,
B.
Buchalter
, and
C.
Hanzlik
,
J. Chem. Phys.
78
,
1543
(
1983
).
84.
U.
Gubler
and
C.
Bosshard
,
Phys. Rev. B
61
,
10702
(
2000
).
85.
C.
Bosshard
,
P.
Gubler
,
U.
snd Kaatz
,
W.
Mazerant
, and
U.
Meier
,
Phys. Rev. B
61
,
10688
(
2000
).
86.
B. F.
Levine
and
C. G.
Bethea
,
J. Chem. Phys.
65
,
2429
(
1976
).
87.
P.
Kaatz
and
D. P.
Shelton
,
J. Chem. Phys.
105
,
3918
(
1996
).
88.
I.
Shoji
,
T.
Kondo
, and
R.
Ito
,
Opt. Quantum Electron.
34
,
797
(
2002
).
89.
A.
Willets
and
J. E.
Rice
,
J. Chem. Phys.
99
,
426
(
1993
).
90.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
Chem. Phys. Lett.
364
,
379
(
2002
).
91.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
118
,
1620
(
2003
).
92.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
119
,
10519
(
2003
).
93.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
120
,
3787
(
2004
).
94.
S. L.
Shostak
,
W. L.
Ebenstein
, and
J. S.
Muenter
,
J. Chem. Phys.
94
,
5875
(
1991
).
95.
A. J.
Russel
and
M. A.
Spackman
,
Mol. Phys.
84
,
1239
(
1995
).
96.
P.
Kaatz
,
E. A.
Donley
, and
D. P.
Shelton
,
J. Chem. Phys.
108
,
849
(
1998
).
97.
G. R.
Alms
,
A. K.
Burnham
, and
W. H.
Flygare
,
J. Chem. Phys.
63
,
3321
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.