The angular intensity distributions of CO and N2 molecules scattered from a LiF(001) surface have been measured as functions of surface temperature, incident translational energy, and incident azimuthal direction affecting surface corrugation at a high resolution. Although both molecules have the same molecular mass and linear structure, only the CO molecule shows a rainbow feature in its scattering pattern, while the N2 molecule shows a single peak distribution. From the comparisons of the obtained results with the calculated predictions based on the newly developed classical theory of the ellipsoid-washboard model, the differences in scattering distribution are attributed to the effects of molecular anisotropy and center-of-mass position. With an increase in the extent of the molecular anisotropy such as that of N2 and CO as compared with rare-gas atoms, the summation of several scattering distributions depending on molecular orientation results in smearing the rainbow scattering on the corrugated surface. This smearing effect, however, attenuates when center-of-mass position deviates from the molecular center, as that for CO.

1.
J. P.
Toennies
,
Appl. Phys.
3
,
91
(
1974
).
2.
K.
Heinz
,
K.
Müller
,
T.
Engel
, and
K. H.
Rieder
,
Structural Studies of Surfaces
(
Springer
, Berlin,
1982
).
3.
W.
Kress
and
F. W.
de Wette
,
Surface Phonons
(
Springer
, Berlin,
1991
).
4.
D.
Farias
and
K. H.
Rieder
,
Rep. Prog. Phys.
61
,
1575
(
1998
).
5.
J. A.
Barker
and
D. J.
Auerbach
,
Surf. Sci. Rep.
4
,
1
(
1985
).
6.
C. T.
Rettner
and
M. N.R.
Ashfold
,
Dynamics of Gas-Surface Interactions
(
The Royal Society of Chemistry
, London,
1991
).
7.
R. J.
Madix
,
Surface Reactions
(
Springer
, Berlin,
1994
).
8.
C. T.
Rettner
,
D. J.
Auerbach
,
J. C.
Tully
, and
A. W.
Kleyn
,
J. Phys. Chem.
100
,
13021
(
1996
).
9.
M.
Bonn
,
A. W.
Kleyn
, and
G. J.
Kroes
,
Surf. Sci.
500
,
475
(
2002
).
10.
A. W.
Kleyn
,
Chem. Soc. Rev.
32
,
87
(
2003
).
11.
B.
Poelsema
and
G.
Comsa
,
Scattering of Thermal Energy Atoms from Disordered Surfaces
,
Springer Tracts in Modern Physics
Vol.
115
, (
Springer
, Berlin,
1989
).
12.
R. M.
Logan
and
R. E.
Stickney
,
J. Chem. Phys.
44
,
195
(
1966
).
13.
J. N.
Smith
,
D. R.
O’Keefe
,
H.
Saltsburg
, and
R. L.
Palmer
,
J. Chem. Phys.
50
,
4667
(
1969
).
14.
J. N.
Smith
,
D. R.
O’Keefe
,
H.
Saltsburg
, and
R. L.
Palmer
,
J. Chem. Phys.
52
,
315
(
1970
).
15.
J. N.
Smith
,
D. R.
O’Keefe
,
H.
Saltsburg
, and
R. L.
Palmer
,
J. Chem. Phys.
55
,
4572
(
1971
).
16.
S.
Yagyu
,
F.
Murakami
,
Y.
Kino
, and
S.
Yamamoto
,
Jpn. J. Appl. Phys., Part 1
37
,
2642
(
1998
).
17.
A. C.
Wight
and
R. E.
Miller
,
J. Chem. Phys.
109
,
1976
(
1998
).
18.
J. D.
McClure
,
J. Chem. Phys.
51
,
1687
(
1968
).
19.
J. D.
McClure
,
J. Chem. Phys.
52
,
2712
(
1970
).
20.
J. D.
McClure
,
J. Chem. Phys.
57
,
2810
(
1972
).
21.
J. D.
McClure
,
J. Chem. Phys.
57
,
2823
(
1972
).
22.
J. R.
Klein
and
M. W.
Cole
,
Surf. Sci.
79
.
269
(
1979
).
23.
J. R.
Klein
and
M. W.
Cole
,
Surf. Sci.
81
.
L319
(
1979
).
24.
E. K.
Schweizer
,
C. T.
Rettner
, and
S.
Holloway
,
Surf. Sci.
249
,
335
(
1991
).
25.
A. W.
Kleyn
and
T. C.M.
Horn
,
Phys. Rep.
199
,
191
(
1991
).
26.
J. C.
Tully
,
J. Chem. Phys.
92
,
680
(
1990
).
27.
T.
Tomii
,
T.
Kondo
,
T.
Hiraoka
,
T.
Ikeuchi
,
S.
Yagyu
, and
S.
Yamamoto
,
J. Chem. Phys.
112
,
9052
(
2000
).
28.
T.
Kondo
,
T.
Tomii
,
T.
Hiraoka
,
T.
Ikeuchi
,
S.
Yagyu
, and
S.
Yamamoto
,
J. Chem. Phys.
112
,
9940
(
2000
).
29.
T.
Tomii
,
T.
Kondo
,
S.
Yagyu
, and
S.
Yamamoto
,
J. Vac. Sci. Technol. A
19
,
675
(
2001
).
30.
T.
Kondo
,
T.
Tomii
,
S.
Yagyu
, and
S.
Yamamoto
,
J. Vac. Sci. Technol. A
19
,
2468
(
2001
).
31.
B.
Berenbak
,
S.
Zboray
,
B.
Riedmuller
,
D. C.
Papageorgopoulos
,
S.
Stolteb
, and
A. W.
Kleyn
,
Phys. Chem. Chem. Phys.
4
,
68
(
2002
).
32.
T.
Yan
,
W. L.
Hase
, and
J. C.
Tully
,
J. Chem. Phys.
120
,
1031
(
2004
).
33.
T.
Kondo
,
T.
Sasaki
, and
S.
Yamamoto
,
J. Chem. Phys.
116
,
7673
(
2002
).
34.
W. L.
Nichols
and
J. H.
Weare
,
J. Chem. Phys.
62
,
3754
(
1975
).
35.
W. L.
Nichols
and
J. H.
Weare
,
J. Chem. Phys.
63
,
379
(
1975
).
36.
W. L.
Nichols
and
J. H.
Weare
,
J. Chem. Phys.
66
,
1075
(
1977
).
37.
T.
Kondo
,
H. S.
Kato
,
T.
Yamada
,
S.
Yamamoto
, and
M.
Kawai
, in
Proceedings of 'International Symposium Stereodynamics of Chemical Reactions 2004'
, to appear in Jan. 2006 in
Eur. Phys. J. D
.
38.
M. J.
Yacaman
and
Z. T.
Ocana
,
J. Appl. Phys.
48
,
418
(
1977
).
39.
H.
Höche
and
H.
Bethge
,
J. Cryst. Growth
33
,
246
(
1976
).
40.
G.
Meyer
and
N. M.
Amer
,
J. Appl. Phys.
56
,
2100
(
1990
).
41.
G.
Lange
,
J. P.
Toennies
,
R.
Vollmer
, and
H.
Weiss
,
J. Chem. Phys.
98
,
10096
(
1993
).
42.
P.
Barraclough
and
P. G.
Hall
,
Surf. Sci.
46
,
393
(
1974
).
43.
J.
Estel
,
H.
Hoinkes
,
H.
Kaarman
,
H.
Nahr
, and
H.
Wilsch
,
Surf. Sci.
54
,
393
(
1976
).
44.
Y.
Ekinci
and
J. P.
Toennies
,
Surf. Sci.
563
,
127
(
2004
).
45.
N.
Garcia
,
J. Chem. Phys.
67
,
897
(
1977
).
46.
H.
Legge
,
J. R.
Manson
, and
J. P.
Toennies
,
J. Chem. Phys.
110
,
8767
(
1999
).
47.
T.
Kondo
, Ph.D. thesis,
University of Tsukuba
,
2003
.
48.
I.
Moroz
and
J. R.
Manson
,
Phys. Rev. B
69
,
205406
(
2004
).
49.
I.
Moroz
,
H.
Ambaya
, and
J. R.
Manson
,
J. Phys.: Condens. Matter
16
,
S2953
(
2004
).
50.
I.
Moroz
and
J. R.
Manson
,
Phys. Rev. B
71
,
113405
(
2005
).
51.
J.
Misewich
,
H.
Zacharias
, and
M. M.T.
Loy
,
Phys. Rev. Lett.
55
,
1919
(
1985
).
52.
C.
Roth
,
J.
Hager
, and
H.
Walther
,
J. Chem. Phys.
97
,
6880
(
1992
).
53.
R. T.
Jongma
,
G.
Berden
,
T.
Rasing
,
H.
Zacharias
, and
G.
Meijer
,
Chem. Phys. Lett.
273
,
147
(
1997
).
54.
A. M.
Wodtke
,
Y.
Huang
, and
D. J.
Auerbach
,
J. Chem. Phys.
118
,
8033
(
2003
).
55.
H.
Mortensen
,
E.
Jensen
,
L.
Diekhöner
,
A.
Baurichter
,
A. C.
Luntz
, and
V. V.
Petrunin
,
J. Chem. Phys.
118
,
11200
(
2003
).
56.
G.
Armand
,
J.
Lapujoulade
, and
Y.
Lejay
,
Surf. Sci.
63
,
143
(
1977
).
57.
T.
Kondo
,
R.
Okada
,
D.
Mori
, and
S.
Yamamoto
,
Surf. Sci.
566–568
,
1153
(
2004
).
58.
E. K.
Grimmelmann
,
J. C.
Tully
, and
M. J.
Cardillo
,
J. Chem. Phys.
72
,
1039
(
1980
).
59.
E. W.
Kuipers
,
M. G.
Tenner
,
A. W.
Kleyn
, and
S.
Stolte
,
Phys. Rev. Lett.
62
,
2152
(
1989
).
60.
M. A.
Hines
and
R. N.
Zare
,
J. Chem. Phys.
98
,
9134
(
1993
).
61.

In the calculation, the rotational temperature of the molecule is set to 0 K, since the rotational temperature of the supersonic molecular beam is generally cold enough to neglect the effect on the intensity distribution. The energy distribution of incident translational velocity is also neglected, i.e., setting the velocity at some given value, since a supersonic molecular beam generally has a narrow translational-energy distribution. The probability S(η,ωVr) of a collision is assumed to be uniform, occurring at all molecular orientation angles η, since it has almost the same probabilities for all cases under our experimental conditions. The molecular mass is set to as 28 amu of CO and N2. The effective mass of the surface is set to 390 amu, which is derived from the analysis of the experimental Ar–LiF(001) scattering as shown in Figs. 2 and 3 and as described the origin in Sec. IV A. The moment of inertia is derived by the simple calculation of (ma×mb)(ma+mb)rd2, where rd is selected as reported value of CO (rd=0.1128nm) from the handbook (Ref. 63). The semimajor axis of the ellipsoid b is set to 0.15 nm. Our experimental condition of θ+θ=90° is included in the calculation for easy comparison with our experimental results.

62.
H.
Asada
,
Jpn. J. Appl. Phys.
20
,
527
(
1981
).
63.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 81th ed. (
CRC
, New York,
1998
), pp.
9
82
.
You do not currently have access to this content.