Predissociation spectra of the H5O2+RGn(RG=Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (33503850cm1) and shared proton (8501950cm1) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H5O2+ [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys.91, 7319 (1989)], indicating that the symmetrical H5O2+ “Zundel” ion remains largely intact in H5O2+Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H5O2+Ar, and is dominated by two sharp transitions at 928 and 1047cm1, with a weaker feature at 1763cm1. The H5O2+Arn,n=15 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H5O2+ rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H5O2+. These results are consistent with assignment of the strong low-energy bands in the H5O2+Ne spectrum to the vibration of the shared proton mostly along the O–O axis, with the 1763cm1 band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.

1.
E. F.
Valeev
and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
7197
(
1998
).
2.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
3.
G.
Zundel
,
Adv. Chem. Phys.
111
,
1
(
2000
).
4.
J.
Kim
U. W.
Schmitt
,
J. A.
Gruetzmacher
,
G. A.
Voth
, and
N. E.
Scherer
,
J. Chem. Phys.
115
,
737
(
2002
).
5.
V.
Buch
,
J.
Sadlej
,
N.
Aytemiz-Uras
, and
J. P.
Devlin
,
J. Phys. Chem. A
106
,
9374
(
2002
).
6.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
,
Science
299
,
1375
(
2003
).
7.
T. D.
Fridgen
,
T. B.
McMahon
,
L.
MacAleese
,
J.
Lemaire
, and
P.
Maitre
,
J. Phys. Chem. A
108
,
9008
(
2004
).
8.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Chem. Phys.
121
,
11523
(
2004
).
9.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
,
M. Y.
Landeweer
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
061101
(
2005
).
10.
E. G.
Diken
,
J. M.
Headrick
,
J. R.
Roscioli
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Phys. Chem. A
109
,
1487
(
2005
).
11.
L. I.
Yeh
,
M.
Okumura
,
J. D.
Myers
,
J. M.
Price
, and
Y. T.
Lee
,
J. Chem. Phys.
91
,
7319
(
1989
).
12.
M.
Okumura
,
L. I.
Yeh
,
J. D.
Myers
, and
Y. T.
Lee
,
J. Phys. Chem.
94
,
3416
(
1990
).
13.
G.
Zundel
and
H.
Metzger
,
Z. Phys. Chem. (Munich)
58
,
225
(
1968
).
14.
The Hydrogen Bond—Recent Developments in Theory and Experiments. II. Structure and Spectroscopy
, edited by
P.
Schuster
,
G.
Zundel
, and
C.
Sandorfy
(
North-Holland
, Amsterdam,
1976
), p.
683
.
15.
M. V.
Vener
,
O.
Kuhn
, and
J.
Sauer
,
J. Chem. Phys.
114
,
240
(
2001
).
16.
J.
Dai
,
Z.
Bacic
,
X.
Huang
,
S.
Carter
, and
J. M.
Bowman
,
J. Chem. Phys.
119
,
6571
(
2003
).
17.
M.
Mella
and
D. C.
Clary
,
J. Chem. Phys.
119
,
10048
(
2003
).
18.
H. M.
Cho
and
S. J.
Singer
,
J. Phys. Chem. A
108
,
8691
(
2004
).
19.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
 et al.,
Science
(submitted).
20.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
21.
M. A.
Suhm
and
R. O.
Watts
,
Phys. Rep.
204
,
293
(
1991
).
22.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
23.
S.
Carter
,
J. M.
Bowman
, and
N. C.
Handy
,
Theor. Chem. Acc.
100
,
191
(
1998
).
24.
S.
Carter
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
4397
(
1998
).
25.
S.
Carter
and
J. M.
Bowman
,
J. Phys. Chem. A
104
,
2355
(
2000
).
26.
J. M.
Bowman
,
S.
Carter
, and
X.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
27.
J.
Oomens
,
A. G.G.M.
Tielens
,
B. G.
Sartakov
,
G.
von Helden
, and
G.
Meijer
,
Astrophys. J.
591
,
968
(
2003
).
28.
M.
Okumura
,
L. I.
Yeh
,
J. D.
Myers
, and
Y. T.
Lee
,
J. Chem. Phys.
85
,
2328
(
1986
).
29.
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
,
Chem. Phys.
239
,
485
(
1998
).
30.
P.
Ayotte
,
G. H.
Weddle
,
J.
Kim
, and
M. A.
Johnson
,
J. Am. Chem. Soc.
120
,
12361
(
1998
).
31.
M. A.
Johnson
and
W. C.
Lineberger
, in
Techniques for the Study of Ion-Molecule Reactions
, edited by
J. J.M.
Farrar
and
W. H.
Saunders
(
Wiley
, New York,
1988
), Vol.
XX
, p.
591
.
32.
L. A.
Posey
,
M. J.
DeLuca
, and
M. A.
Johnson
,
Chem. Phys. Lett.
131
,
170
(
1986
).
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al.,
Gaussian03
(
Gaussian, Inc.
, Pittsburgh, PA,
2003
).
34.
R.
Lascola
and
D. J.
Nesbitt
,
J. Chem. Phys.
95
,
7917
(
1991
).
35.
R. S.
Walters
and
M. A.
Duncan
,
Aust. J. Chem.
57
,
1145
(
2004
).
36.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
37.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
38.
D. J.
Wales
,
J. Chem. Phys.
110
,
10403
(
1999
).
39.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
, and
J. M.
Bowman
J. Chem. Phys.
(submitted).
40.
M.
Kaledin
,
A.
Kaledin
, and
J. M.
Bowman
(unpublished).
41.
M.
Kaledin
,
A.
Brown
,
A. L.
Kaledin
, and
J. M.
Bowman
,
J. Chem. Phys.
121
,
5646
(
2004
).
42.
J. M.
Bowman
,
X.
Zhang
, and
A.
Brown
,
J. Chem. Phys.
119
,
646
(
2003
).
43.
See EPAPS Document No. E-JCPSA6-123-015525 for a visualization of these motions. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.