An effective exact-exchange Kohn–Sham approach for the treatment of excited electronic states, the generalized adiabatic connection open-shell localized Hartree–Fock (GAC-OSLHF) method is presented. The GAC-OSLHF method is based on the generalized adiabatic connection Kohn–Sham formalism and therefore capable of treating excited electronic states, which are not the energetically lowest of their symmetry. The method is self-interaction free and allows for a fully self-consistent computation of excited valence as well as Rydberg states. Results for atoms and small- and medium-size molecules are presented and compared to restricted open-shell Hartree–Fock (ROHF) and time-dependent density-functional results as well as to experimental data. While GAC-OSLHF and ROHF results are quite close to each other, the GAC-OSLHF method shows a much better convergence behavior. Moreover, the GAC-OSLHF method as a Kohn–Sham method, in contrast to the ROHF approach, represents a framework which allows also for a treatment of correlation besides an exchange by appropriate functionals. In contrast to the common time-dependent density-functional methods, the GAC-OSLHF approach is capable of treating doubly or multiply excited states and can be easily applied to molecules with an open-shell ground state. On the nodal planes of the energetically highest occupied orbital, the local multiplicative GAC-OSLHF exchange potential asymptotically approaches a different, i.e., nonzero, value than in other regions, an asymptotic behavior which is known from exact Kohn–Sham exchange potentials of ground states of molecules.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
, Oxford,
1989
).
2.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
, Heidelberg,
1990
).
3.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
, New York,
2000
), and references therein.
4.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
, in
Density Functional Theory II
,
Springer Series in Topics in Current Chemistry, Band 181
, edited by
R. F.
Nalewajski
(
Springer
, Heidelberg,
1996
), p.
81
.
5.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, Band I, edited by
D. P.
Chong
(
World Scientific
, Singapore,
1995
), p.
155
.
6.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
(
1995
).
7.
C.
Jamorski
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
104
,
5134
(
1996
).
8.
M. E.
Casida
, in
Recent Developments and Application of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
, Amsterdam,
1996
), p.
391
.
9.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
10.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
11.
A.
Görling
,
H. H.
Heinze
,
S. P.
Ruzankin
,
M.
Staufer
, and
N.
Rösch
,
J. Chem. Phys.
110
,
2785
(
1999
).
12.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
302
,
375
(
1999
).
13.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
,
B. O.
Roos
, and
L.
Serrano-Andres
,
Mol. Phys.
97
,
859
(
1999
).
14.
K.
Yabana
and
G. F.
Bertsch
,
Int. J. Quantum Chem.
75
,
55
(
1999
).
15.
M. E.
Casida
,
F.
Gutierrez
,
J.
Guan
,
F.-X.
Gadea
,
D.
Salahub
, and
J.-P.
Daudey
,
J. Chem. Phys.
113
,
7062
(
2000
).
16.
O.
Gritsenko
and
E. J.
Baerends
,
J. Chem. Phys.
121
,
655
(
2004
).
17.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
18.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
19.
C.-P.
Hsu
,
S.
Hirata
, and
M.
Head-Gordon
,
J. Phys. Chem. A
105
,
451
(
2001
).
20.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
21.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
22.
Z. L.
Cai
,
K.
Sendt
, and
J. R.
Reimers
,
J. Chem. Phys.
117
,
5543
(
2002
).
23.
S.
Grimme
and
M.
Parac
,
ChemPhysChem
4
,
292
(
2003
).
24.
M.
Weimer
,
W.
Hieringer
,
F.
Della Sala
, and
A.
Görling
,
Chem. Phys.
209
,
309
(
2005
).
25.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
26.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
27.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
28.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
29.
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
114
,
652
(
2001
).
30.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
31.
D. J.
Tozer
,
J. Chem. Phys.
112
,
3507
(
2000
).
32.
M. E.
Casida
and
D. R.
Salahub
,
J. Chem. Phys.
113
,
8918
(
2000
).
33.
S.
Hirata
,
C.-G.
Zhan
,
E.
Aprà
,
T. L.
Windus
, and
D. A.
Dixon
,
J. Phys. Chem. A
107
,
10154
(
2003
).
34.
F.
Della Sala
and
A.
Görling
,
Int. J. Quantum Chem.
91
,
131
(
2003
).
35.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowskli
, and
R. J.
Bartlett
,
J. Chem. Phys.
16
,
6468
(
2002
).
36.
A. K.
Theophilou
,
J. Phys. C
12
,
5419
(
1978
).
37.
V. N.
Glushkov
and
A. K.
Theophilou
,
Phys. Rev. A
64
,
064501
(
2001
).
38.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
,
Phys. Rev. A
37
,
2805
(
1988
).
39.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
,
Phys. Rev. A
37
,
2809
(
1988
).
40.
L. N.
Oliveira
,
E. K. U.
Gross
, and
W.
Kohn
,
Phys. Rev. A
37
,
2821
(
1988
).
43.
M.
Levy
and
A.
Nagy
,
Phys. Rev. Lett.
83
,
4361
(
1999
).
44.
A.
Nagy
and
M.
Levy
,
Phys. Rev. A
63
,
052502
(
2001
).
45.
F.
Tasnadi
and
A.
Nagy
,
J. Chem. Phys.
119
,
4141
(
2003
).
46.
A.
Nagy
,
Int. J. Quantum Chem.
99
,
256
(
2004
).
47.
N.
Moiseyev
,
Chem. Phys. Lett.
321
,
469
(
2000
).
48.
V.
Sahni
,
L.
Massa
,
R.
Singh
, and
M.
Slamet
,
Phys. Rev. Lett.
87
,
113002
(
2001
).
49.
M. K.
Harbola
,
Phys. Rev. A
65
,
052504
(
2002
).
50.
N. I.
Gidopoulos
,
P. G.
Papaconstantnou
, and
E. K. U.
Gross
,
Phys. Rev. A
88
,
033003
(
2002
).
51.
A.
Görling
,
Phys. Rev. A
59
,
3359
(
1999
).
52.
53.
R.
Ahlrichs
,
M.
Bär
,
H.-P.
Baron
 et al, TURBOMOLE,
University of Karlsruhe
, Germany,
1988
.
54.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
55.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
56.
H.
Horn
,
H.
Weiss
,
M.
Häser
,
M.
Ehrig
, and
R.
Ahlrichs
,
J. Comput. Chem.
12
,
1058
(
1991
).
57.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
58.
R.
Gaudoin
and
K.
Burke
,
Phys. Rev. Lett.
93
,
173001
(
2004
).
59.
U.
von Barth
,
Phys. Rev. A
20
,
1693
(
1979
).
60.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. Lett.
79
,
2089
(
1997
).
61.
M.
Städele
,
M.
Moukara
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. B
59
,
10031
(
1999
).
62.
A.
Görling
,
Phys. Rev. Lett.
83
,
5459
(
1999
).
63.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
64.
S.
Hamel
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
114
,
7342
(
2001
).
65.
L.
Veseth
,
J. Chem. Phys.
114
,
8789
(
2001
).
66.
A.
Görling
and
M.
Ernzerhof
,
Phys. Rev. A
51
,
4501
(
1995
).
67.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
115
,
1635
(
2001
).
68.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
69.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
70.
S.
Kümmel
and
J. P.
Perdew
,
Phys. Rev. Lett.
90
,
043004
(
2003
).
71.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
116
,
5374
(
2002
).
72.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
64
,
042506
(
2001
).
73.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
118
,
10439
(
2003
).
74.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
75.
S.
Krebs
,
Comput. Phys. Commun.
116
,
137
(
1999
).
76.
F. W.
Bobrowicz
and
W. A.
Goddard
 III
, in
Modern Theoretical Chemistry: Methods of Electronic Structure Theory
, edited by
H. F.
Schafer
 III
(
Plenum
, New York,
1977
), Vol.
3
, p.
79
.
77.
Detailed discussion and references can be found in the GAMESS documentaion, http://www.msg.ameslab.gov/GAMESS/GAMESS.html.
78.
T.
Sano
and
Y. J.
l’Haya
,
J. Chem. Phys.
95
,
6607
(
1991
).
79.
R. P.
Muller
,
J.-M.
Langlois
,
M. N.
Ringnalda
,
R. A.
Friesner
, and
W. A.
Goddard
 III
,
J. Chem. Phys.
100
,
1226
(
1994
).
80.
I.
Frank
,
J.
Hutter
,
D.
Marx
, and
M.
Parrinello
,
J. Chem. Phys.
108
,
4060
(
1998
).
81.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
288
,
689
(
1998
).
82.
M.
Filatov
and
S.
Shaik
,
J. Chem. Phys.
110
,
116
(
1999
).
83.
S.
Grimm
,
C.
Nonnenberg
, and
I.
Frank
,
J. Chem. Phys.
119
,
11574
(
2003
).
84.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
,
Theor. Chim. Acta
43
,
261
(
1977
).
85.
D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
86.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
87.
88.
F.
Della Sala
and
A.
Görling
,
Phys. Rev. Lett.
89
,
033003
(
2002
).
89.
F. M.
Bickelhaupt
and
E. J.
Baerends
, in
Review in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley
, New York,
2000
), Vol.
15
.
91.
H.
Koch
,
O.
Christiansen
,
P.
Jorgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
244
,
75
(
1995
).
92.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
3073
(
1994
).
93.
S.
Wang
,
Y.
Shi
,
S.
Denommee
,
B.
Simard
, and
Y.-P.
Lee
,
J. Chem. Phys.
119
,
7772
(
2003
).
94.
J.
Wan
,
J.
Meller
,
M.
Hada
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
113
,
7853
(
2000
).
You do not currently have access to this content.