Gas separation efficiencies of three zeolite membranes (Faujasite, MFI, and Chabazite) have been examined using the method of molecular dynamics. Our investigation has allowed us to study the effects of pore size and structure, state conditions, and compositions on the permeation of two binary gas mixtures, O2N2 and CO2N2. We have found that for the mixture components with similar sizes and adsorption characteristics, such as O2N2, small-pore zeolites are not suited for separations, and this result is explicable at the molecular level. For mixture components with differing adsorption behavior, such as CO2N2, separation is mainly governed by adsorption and small-pore zeolites separate such gases quite efficiently. When selective adsorption takes place, we have found that, for species with low adsorption, the permeation rate is low, even if the diffusion rate is quite high. Our results further indicate that loading (adsorption) dominates the separation of gas mixtures in small-pore zeolites, such as MFI and Chabazite. For larger-pore zeolites such as Faujasite, diffusion rates do have some effect on gas mixture separation, although adsorption continues to be important. Finally, our simulations using existing intermolecular potential models have replicated all known experimental results for these systems. This shows that molecular simulations could serve as a useful screening tool to determine the suitability of a membrane for potential separation applications.

1.
W.
Jia
and
S.
Murad
,
J. Chem. Phys.
120
,
4877
(
2004
).
2.
J.
Caro
,
M.
Noack
,
P.
Kolsch
, and
R.
Schafer
,
Microporous Mesoporous Mater.
38
,
3
(
2000
).
3.
D. W.
Breck
,
Zeolite Molecular Sieves: Structure, Chemistry, and Use
(
Wiley
, New York
1974
).
4.
S.
Murad
and
J. G.
Powles
,
J. Chem. Phys.
99
,
7271
(
1993
).
5.
S.
Murad
,
Adsorption
2
,
95
(
1996
).
6.
J.
Lin
and
S.
Murad
,
Mol. Phys.
99
,
1175
(
2001
).
7.
S.
Murad
and
J.
Lin
,
Ind. Eng. Chem. Res.
41
,
1076
(
2002
).
8.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
, Oxford,
1987
).
9.
S.
Murad
and
J.
Lin
,
Chem. Eng. J.
74
,
99
(
1999
).
10.
J.
Vrabec
,
J.
Stoll
, and
H.
Hasse
,
J. Phys. Chem. B
105
,
12126
(
2001
).
11.
J.
Harris
and
K.
Yung
,
J. Phys. Chem.
99
,
12021
(
1995
).
12.
S. H.
Lee
,
G. K.
Moon
,
S. G.
Choi
, and
H. S.
Kim
,
J. Phys. Chem.
98
,
1561
(
1994
).
13.
R. O.
Watts
,
Mol. Phys.
28
,
1069
(
1974
).
14.
I. G.
Tironi
,
R.
Sperb
,
P. E.
Smith
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
102
,
5451
(
1995
).
15.
G.
Guan
,
K.
Kusakabe
, and
S.
Morooka
,
J. Chem. Eng. Jpn.
34
,
990
(
2001
).
16.
C.
Webster
,
R.
Drago
, and
M.
Zerner
,
J. Am. Chem. Soc.
22
,
5509
(
1998
).
17.
G. V.T.
Sitsishvili
,
Natural Zeolites
(
E. Horwood
, New York,
1992
).
18.
H. S.
Oh
,
M. H.
Kim
, and
H. K.
Rhee
,
Stud. Surf. Sci. Catal.
105
,
2217
(
1997
)
19.
J. C.
Poshusta
,
R. D.
Noble
, and
J. L.
Falconer
,
J. Membr. Sci.
160
,
115
(
1999
).
20.
L. J.P.
van den Broeke
,
F.
Kapteijn
, and
J. A.
Moulijn
,
Chem. Eng. Sci.
54
,
259
(
1999
).
21.
See EPAPS Document No. E-JCPSA6-123-708526 for Figs. 1S–4S and Tables 1S–5S referred to in the paper. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
22.
W. J.W.
Bakker
,
L. J.P.
van den Broeke
,
F.
Kapteijn
, and
J. A.
Moulijn
,
AIChE J.
43
,
2203
(
1997
).
23.
L. J.P.
van den Broeke
,
F.
Kapteijn
, and
J. A.
Moulijn
,
Chem. Eng. Sci.
54
,
245
(
1999
).
24.
S.
Kazama
and
M.
Sakashita
,
J. Membr. Sci.
243
,
59
(
2004
).
25.
A.
De Stefanis
,
G.
Perez
,
E.
Semprini
,
F.
Stefani
, and
A. A.G.
Tomlinson
,
Microporous Mesoporous Mater.
71
,
103
(
2004
).
26.
I.
Salla
,
P.
Salagre
,
Y.
Cesteros
,
F.
Medina
, and
J. E.
Sueiras
,
J. Phys. Chem. B
108
,
5359
(
2004
).
27.
T.
Tomita
,
K.
Nakayama
, and
H.
Sakai
,
Microporous Mesoporous Mater.
68
,
71
(
2004
).

Supplementary Material

You do not currently have access to this content.