The ability of several water models to predict the properties of ices is discussed. The emphasis is put on the results for the densities and the coexistence curves between the different ice forms. It is concluded that none of the most commonly used rigid models is satisfactory. A new model specifically designed to cope with solid-phase properties is proposed. The parameters have been obtained by fitting the equation of state and selected points of the melting lines and of the coexistence lines involving different ice forms. The phase diagram is then calculated for the new potential. The predicted melting temperature of hexagonal ice (Ih) at 1bar is 272.2K. This excellent value does not imply a deterioration of the rest of the properties. In fact, the predictions for both the densities and the coexistence curves are better than for TIP4P, which previously yielded the best estimations of the ice properties.

1.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford University Press
, London,
1969
).
2.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
, Oxford,
1999
).
3.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature (London)
391
,
268
(
1998
).
4.
J. P.
Poirier
,
Nature (London)
299
,
683
(
1982
).
5.
P.
Jenniskens
and
D.
Blake
,
Science
265
,
753
(
1994
).
6.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
7.
B.
Guillot
,
J. Mol. Liq.
101
,
219
(
2002
).
8.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullmann
(
Reidel
, Dordrecht,
1981
), pp.
333
342
.
9.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
10.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
11.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
12.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
13.
C.
Burnham
and
S.
Xantheas
,
J. Chem. Phys.
116
,
1479
(
2002
).
14.
A.
Glättli
,
X.
Daura
, and
W.
van Gunsteren
,
J. Chem. Phys.
116
,
9811
(
2002
).
15.
H.
Yu
,
T.
Hansson
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
118
,
221
(
2003
).
16.
H.
Nada
and
J. P. J. M.
van der Eerden
,
J. Chem. Phys.
118
,
7401
(
2003
).
17.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
18.
H.
Saint-Martin
,
B.
Hess
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
120
,
11133
(
2004
).
19.
M.
Lísal
,
J.
Kolafa
, and
I.
Nezbeda
,
J. Chem. Phys.
117
,
8892
(
2002
).
20.
T.
Bryk
and
A. D. J.
Haymet
,
Mol. Simul.
30
,
131
(
2004
).
21.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
(
2004
).
22.
Y.
Koyama
,
H.
Tanaka
,
G.
Gao
, and
X. C.
Zeng
,
J. Chem. Phys.
121
,
7926
(
2004
).
23.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
24.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
25.
S.
Yashonath
and
C. N. R.
Rao
,
Mol. Phys.
54
,
245
(
1985
).
26.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
,
J. Phys. Chem. B
102
,
8641
(
1998
).
27.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
28.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
(
1935
).
29.
E. R.
Davidson
and
K.
Morokuma
,
J. Chem. Phys.
81
,
3741
(
1984
).
30.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
J. Chem. Phys.
112
,
7169
(
2000
).
31.
L. G.
MacDowell
,
E.
Sanz
,
C.
Vega
, and
J. L. F.
Abascal
,
J. Chem. Phys.
121
,
10145
(
2004
).
32.
D. A.
Kofke
,
Mol. Phys.
78
,
1331
(
1993
).
33.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
34.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
,
Phys. Rev. Lett.
92
,
255701
(
2004
).
35.
M. D.
Morse
and
S. A.
Rice
,
J. Chem. Phys.
76
,
650
(
1982
).
36.
I.
Borzsák
and
P.
Cummings
,
Chem. Phys. Lett.
300
,
359
(
1999
).
37.
R. B.
Ayala
and
V.
Tchijov
,
Can. J. Phys.
81
,
11
(
2003
).
38.
S. W.
Rick
and
A. D. J.
Haymet
,
J. Chem. Phys.
118
,
9291
(
2003
).
39.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
,
J. Chem. Phys.
121
,
1165
(
2004
).
40.
G. T.
Gao
,
X. C.
Zeng
, and
H.
Tanaka
,
J. Chem. Phys.
112
,
8534
(
2000
).
41.
M. J.
Vlot
,
J.
Huinink
, and
J. P.
van der Eerden
,
J. Chem. Phys.
110
,
55
(
1999
).
42.
L. A.
Báez
and
P.
Clancy
,
J. Chem. Phys.
103
,
9744
(
1995
).
43.
B. W.
Arbuckle
and
P.
Clancy
,
J. Chem. Phys.
116
,
5090
(
2002
).
44.
T.
Bryk
and
A. D. J.
Haymet
,
J. Chem. Phys.
117
,
10258
(
2002
).
45.
H.-J.
Woo
and
P. A.
Monson
,
J. Chem. Phys.
118
,
7005
(
2003
).
46.
C.
McBride
,
E.
Sanz
,
C.
Vega
, and
J. L. F.
Abascal
,
Mol. Phys.
103
,
1
(
2005
).
47.
P.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
48.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Phys. Rev. E
48
,
3799
(
1993
).
49.
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Rev. Lett.
92
,
225702
(
2004
).
50.
C.
McBride
,
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
121
,
11907
(
2004
).
51.
S. C.
Gay
,
E. J.
Smith
, and
A. D. J.
Haymet
,
J. Chem. Phys.
116
,
8876
(
2002
).
52.
A. K.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
You do not currently have access to this content.