Vertical excitation energies of the Rydberg radical H3O are inferred from ab initio electron propagator calculations on the electron affinities of H3O+. The adiabatic ionization energy of H3O is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine oscillator strengths. Given that the experimental spectrum of H3O does not seem to be available, comparisons with previous calculations are discussed. A simple model Hamiltonian, suitable for the study of bound states with arbitrarily high energies is generated by these means.

1.
G.
Herzberg
,
Annu. Rev. Phys. Chem.
38
,
27
(
1987
).
2.
S.
Raynor
and
D.
Herschbach
,
J. Phys. Chem.
86
,
3592
(
1982
).
3.
J.
Kaspar
,
V. H.
Smith
, and
B. N.
McMaster
, in
Applied Quantum Chemistry
, edited by
V. H.
Smith
(
Reidel
, New York,
1986
), p.
403
.
4.
B. E.
Turner
,
Symp. Int. Astron. Union
150
,
181
(
1992
).
5.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data Monogr.
,
3
(
1994
).
6.
I.
Martín
and
G.
Simons
,
J. Chem. Phys.
62
,
4799
(
1975
).
7.
I.
Martín
,
C.
Lavín
,
A.
Velasco
,
M. O.
Martín
,
J.
Karwowski
, and
G. H. F.
Diercksen
,
Chem. Phys. Lett.
202
,
307
(
1996
).
8.
J. V.
Ortiz
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
, Singapore,
1997
), Vol.
2
, p.
1
;
J. V.
Ortiz
,
V. G.
Zakrzewski
, and
O.
Dolgounitcheva
, in
Conceptual Trends in Quantum Chemistry
, edited by
E. S.
Kryachko
(
Kluwer
, Dordrecht,
1997
), Vol.
3
, p.
465
.
9.
J.
Linderberg
and
Y.
Őhrn
,
Propagators in Quantum Chemistry
, 2nd ed., (
Wiley
, Hoboken,
2004
).
10.
J. V.
Ortiz
,
Adv. Quantum Chem.
35
,
33
(
1999
).
11.
A. M.
Ferreira
,
G.
Seabra
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, in
Quantum-Mechanical Prediction of Thermochemical Data
, edited by
J.
Cioslowski
(
Kluwer
, Dordrecht,
2001
), p.
131
.
12.
C.
Lavín
and
I.
Martín
,
Adv. Quantum Chem.
28
,
205
(
1997
).
13.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision C.02 (
Gaussian
, Inc., Wallingford, CT,
2004
).
14.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
15.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
16.
L. S.
Cederbaum
,
J. Phys. B
8
,
290
(
1975
).
17.
V. G.
Zakrzewski
,
J. V.
Ortiz
,
J. A.
Nichols
,
D.
Heryadi
,
D. L.
Yeager
, and
J. T.
Golab
,
Int. J. Quantum Chem.
60
,
29
(
1996
).
18.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
19.
S.
Havriliak
and
H. F.
King
,
J. Am. Chem. Soc.
105
,
4
(
1983
).
20.
S.
Havriliak
,
T. R.
Furlani
, and
H. F.
King
,
Can. J. Phys.
62
,
1336
(
1984
).
21.
K.
Ragavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
22.
F.
Chen
and
E. R.
Davidson
,
J. Phys. Chem.
105
,
10915
(
2001
).
23.
M.
Luo
and
M.
Jungen
,
Chem. Phys.
241
,
297
(
1999
).
You do not currently have access to this content.