The ionization energies for methylene (CH2), methyl (CH3), ethynyl (C2H), vinyl (C2H3), ethyl (C2H5), propargyl (C3H3), and allyl (C3H5) radicals have been calculated by the wave-function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasiperturbative triple excitation [CCSD(T)]. When it is appropriate, the zero-point vibrational energy correction, the core–valence electronic correction, the scalar relativistic effect correction, the diagonal Born–Oppenheimer correction, and the high-order correlation correction have also been made in these calculations. The comparison between the computed ionization energy (IE) values and the highly precise experimental IE values determined in previous pulsed field ionization-photoelectron (PFI-PE) studies indicates that the CCSD(T)/CBS method is capable of providing accurate IE predictions for these hydrocarbon radicals achieving error limits well within ±10meV. The benchmarking of the CCSD(T)/CBS IE predictions by the PFI-PE experimental results also lends strong support for the conclusion that the CCSD(T)/CBS approach with high-level energy corrections can serve as a valuable alternative for reliable IE determination of radicals, particularly for those radicals with very unfavorable Franck–Condon factors for photoionization transitions near their ionization thresholds.

1.
A.
Dalgarno
and
J. L.
Fox
, in
Unimolecular and Bimolecular Ion-Molecule Reaction Dynamics
, edited by
C. Y.
Ng
,
T.
Baer
, and
I.
Powis
(
Wiley
, Chichester,
1994
), p.
1
.
2.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
Wiley
, New York,
1990
).
3.
C. Y.
Ng
,
Int. J. Mass. Spectrom.
200
,
357
(
2000
).
4.
NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
5.
E. W.
Schlag
,
ZEKE Spectroscopy
(
Cambridge University Press
, Cambridge,
1996
).
6.
High Resolution Laser Photoionization and Photoelectron Studies
, edited by
I.
Powis
,
T.
Baer
, and
C. Y.
Ng
(
Wiley
, Chichester,
1995
).
7.
P. M.
Johnson
, in
Photoionization and Photodetachment
, edited by
C. Y.
Ng
(
World Scientific
, Singapore,
2000
), p.
296
.
8.
C. Y.
Ng
,
Annu. Rev. Phys. Chem.
53
,
101
(
2002
).
10.
H.-K.
Woo
,
J.
Zhan
,
K.-C.
Lau
,
C. Y.
Ng
, and
Y.-S.
Cheung
,
J. Chem. Phys.
116
,
8803
(
2002
).
11.
H.-K.
Woo
,
K.-C.
Lau
,
J.
Zhan
,
C. Y.
Ng
,
C.-L.
Li
,
W.-K.
Li
, and
P. M.
Johnson
,
J. Chem. Phys.
119
,
7789
(
2003
).
12.
H. K.
Woo
,
P.
Wang
,
K.-C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
9561
(
2004
).
13.
H.-K.
Woo
,
K.-C.
Lau
, and
C. Y.
Ng
,
Chin. J. Phys. Chem.
17
,
292
(
2004
).
14.
H. K.
Woo
,
P.
Wang
,
K.-C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Chem. Phys.
108
,
9637
(
2004
).
15.
J.
Yang
,
Y.
Mo
,
K. C.
Lau
,
Y.
Song
,
X. M.
Qian
, and
C. Y.
Ng
,
Phys. Chem. Chem. Phys.
7
,
1518
(
2005
).
16.
C.-W.
Hsu
and
C. Y.
Ng
,
J. Chem. Phys.
101
,
5596
(
1994
).
17.
E.
de Beer
,
M.
Born
,
C. A.
de Lange
, and
N. P. C.
Westwood
,
Chem. Phys. Lett.
186
,
40
(
1991
).
18.
R. T.
Wiedmann
,
R. G.
Tonkyn
,
M. G.
White
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
97
,
768
(
1992
).
19.
C.-W.
Hsu
,
D. P.
Baldwin
,
C.-L.
Liao
, and
C. Y.
Ng
,
J. Chem. Phys.
100
,
8047
(
1994
).
20.
R.
Signorell
,
H.
Palm
, and
F.
Merkt
,
J. Chem. Phys.
106
,
6523
(
1997
).
21.
C.-W.
Hsu
and
C. Y.
Ng
,
J. Chem. Phys.
101
,
5596
(
1994
).
22.
Y.-S.
Cheung
,
C.-W.
Hsu
, and
C. Y.
Ng
,
J. Electron Spectrosc. Relat. Phenom.
97
,
115
(
1998
).
23.
S.
Willitsch
,
L. L.
Imbach
, and
F.
Merkt
,
J. Chem. Phys.
117
,
1939
(
2002
).
24.
J. A.
Blush
,
P.
Chen
,
R. T.
Wiedmann
, and
M. G.
White
,
J. Chem. Phys.
98
,
3557
(
1993
).
25.
T.
Gilbert
,
I.
Fischer
, and
P. J.
Chen
,
Chem. Phys.
112
,
2572
(
2000
).
26.
T.
Gilbert
,
I.
Fischer
, and
P. J.
Chen
,
Chem. Phys.
113
,
561
(
2000
).
27.
G. C.
Eiden
,
K.-T.
Lu
,
J.
Badenhoop
,
F.
Weinhold
, and
J. C.
Weisshaar
,
J. Chem. Phys.
104
,
9998
(
1996
).
28.
G. K.
Jarvis
,
K.-M.
Weitzel
,
M.
Malow
,
T.
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Phys. Chem. Chem. Phys.
1
,
5259
(
1999
).
29.
Y.
Song
,
X. M.
Qian
,
K. C.
Lau
,
C. Y.
Ng
,
J.
Liu
, and
W.
Chen
,
J. Chem. Phys.
115
,
2582
(
2001
).
30.
D. H.
Mordaunt
,
M. N. R.
Ashfold
,
R. N.
Dixon
,
P.
Loeffler
,
L.
Schnieder
, and
K. H.
Welge
,
J. Chem. Phys.
108
,
519
(
1998
).
31.
D. H.
Mordaunt
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
104
,
6460
(
1996
).
32.
X.-M.
Qian
,
K.-C.
Lau
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
11031
(
2004
), and reference therein.
33.
B.
Ruscic
,
J.
Berkowitz
,
L. A.
Curtiss
, and
J. A.
Pople
,
J. Chem. Phys.
91
,
114
(
1989
), and references therein.
34.
T.
Schüßler
,
W.
Roth
,
T.
Gerber
,
C.
Alcaraz
, and
I.
Fischer
,
Phys. Chem. Chem. Phys.
7
,
819
(
2005
).
35.
I.
Fischer
,
Int. J. Mass. Spectrom.
216
,
131
(
2002
).
36.
S.
Willitsch
,
J. M.
Dyke
, and
F.
Merkt
,
Helv. Chim. Acta
86
,
1152
(
2003
).
37.
J. A.
Pople
,
M.
Head-Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
).
38.
L. A.
Curtiss
,
C.
Jones
,
G. W.
Trucks
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
93
,
2537
(
1990
).
39.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
40.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
41.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
108
(
2001
).
42.
J. M. L.
Martin
and
G.
Oliverira
,
J. Chem. Phys.
111
,
1843
(
1999
).
43.
S.
Parthiban
and
J. M. L.
Martin
,
J. Chem. Phys.
114
,
6014
(
2001
).
44.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
120
,
4129
(
2004
).
45.
J. A.
Montgomery
, Jr.
,
J. W.
Ocherski
, and
G. A.
Petersson
,
J. Chem. Phys.
101
,
5900
(
1994
).
46.
J. W.
Ochterski
,
G. A.
Petersson
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
104
,
2598
(
1996
).
47.
J. A.
Montgomery
, Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
110
,
2822
(
1999
).
48.
G. A.
Petersson
,
D. K.
Malick
,
W. G.
Wilson
,
J. W.
Ochterski
,
J. A.
Montgomery
, Jr.
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
10570
(
1998
).
49.
J. A.
Montgomery
, Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
112
,
6532
(
2000
).
50.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
 et al,
J. Chem. Phys.
121
,
11599
(
2004
).
51.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
52.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
53.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
54.
C.
Hampel
,
K. A.
Peterson
, and
H.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1990
).
55.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
56.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1988
).
57.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
58.
A. K.
Wilson
,
T. v.
Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
59.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
60.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Nago
,
J. Chem. Phys.
106
,
9639
(
1996
).
61.
A.
Halkier
,
T.
Helgaker
,
P.
Jorgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
62.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision B.05,
Gaussian, Inc.
, Wallingford CT,
2003
.
63.
R. S.
Grev
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
95
,
5128
(
1991
).
64.
V.
Barone
,
J. Chem. Phys.
120
,
3059
(
2004
).
65.
V.
Barone
,
J. Phys. Chem.
108
,
4146
(
2004
).
66.
V.
Barone
,
Chem. Phys. Lett.
383
,
528
(
2004
).
67.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
68.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
69.
E. R.
Davidson
,
Y.
Ishikawa
, and
G. L.
Malli
,
Chem. Phys. Lett.
84
,
226
(
1981
).
70.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
71.
E. F.
Valeev
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
3921
(
2003
).
72.
MOLPRO is a package of ab initio programs written by
H.-J.
Werner
,
P. J.
Knowles
,
M.
Schütz
 et al
73.
E.
Aprà
,
T. L.
Windus
,
T. P.
Straatsma
 et al, NWCHEM,
A computational chemistry package for parallel computers, version 4.6
,
Pacific Northwest National Laboratory
, Richland, Washington 99352-0999, USA,
2004
.
74.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
 et al, PSI 3.2,
2003
.
75.

The current perturbative anharmonicity implemented in GAUSSIAN03 package is not intended for linear molecule (V. Barone, private communication). To calculate the anharmonic effect for C2H, we have slightly distorted the molecule from linearity to planar Cs symmetry. However, this trick did not give physically reasonable anharmonic corrections for C2H+.

76.
D.
Feller
and
D. A.
Dixon
,
J. Chem. Phys.
115
,
3484
(
2001
).
77.
M. N.
Glukhovtsev
and
R. D.
Bach
,
Chem. Phys. Lett.
286
,
51
(
1998
).
You do not currently have access to this content.