The intermediate Hamiltonian (IH) coupled-cluster method makes possible the use of very large model spaces in coupled-cluster calculations without running into intruder states. This is achieved at the cost of approximating some of the IH matrix elements, which are not taken at their rigorous effective Hamiltonian (EH) value. The extrapolated intermediate Hamiltonian (XIH) approach proposed here uses a parametrized IH and extrapolates it to the full EH, with model spaces larger by several orders of magnitude than those possible in EH coupled-cluster methods. The flexibility and resistance to intruders of the IH approach are thus combined with the accuracy of full EH. Various extrapolation schemes are described. A pilot application to the electron affinities (EAs) of alkali atoms is presented, where converged EH results are obtained by XIH for model spaces of 20000 determinants; direct EH calculations converge only for a one-dimensional model space. Including quantum electrodynamic effects, the average XIH error for the EAs is 0.6meV and the largest error is 1.6meV. A new reference estimate for the EA of Fr is proposed at 486±2meV.

1.
For a recent review see
R. J.
Bartlett
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
, Singapore,
1995
), Vol.
2
, p.
1047
.
2.
For a review on multireference CC methods and particularly the FSCC approach, see
D.
Mukherjee
and
S.
Pal
,
Adv. Quantum Chem.
20
,
292
(
1989
);
for a review on nonrelativistic FSCC applications see
U.
Kaldor
,
Theor. Chim. Acta
80
,
427
(
1991
);
for a review on relativistic FSCC applications see
U.
Kaldor
and
E.
Eliav
,
Adv. Quantum Chem.
31
,
313
(
1998
).
3.
A.
Landau
,
E.
Eliav
, and
U.
Kaldor
,
Chem. Phys. Lett.
313
,
399
(
1999
).
4.
A.
Landau
,
E.
Eliav
, and
U.
Kaldor
,
Adv. Quantum Chem.
39
,
171
(
2001
).
5.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
121
,
6634
(
2004
).
6.
U.
Kaldor
,
E.
Eliav
, and
A.
Landau
, in
Fundamental World of Quantum Chemistry
, edited by
E. J.
Brandas
and
E. S.
Kryachko
(
Kluwer
, Dordrecht,
2004
), Vol.
3
, pp.
365
406
.
7.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
113
,
9905
(
2000
).
8.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
115
,
6862
(
2001
).
9.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
114
,
2977
(
2001
).
10.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
115
,
2389
(
2001
).
11.
E.
Eliav
,
A.
Landau
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Phys. B
35
,
1693
(
2002
).
12.
J.-P.
Malrieu
,
Ph.
Durand
, and
J.-P.
Daudey
,
J. Phys. A
18
,
809
(
1985
).
13.
J. L.
Heully
,
J. P.
Malrieu
, and
A.
Zaitsevski
,
J. Chem. Phys.
105
,
6887
(
1996
).
14.
D.
Mukhopadhyay
,
B.
Datta
, and
D.
Mukherjee
,
Chem. Phys. Lett.
197
,
236
(
1992
).
15.
G. L.
Malli
,
A. B. F.
Da Silva
, and
Y.
Ishikawa
,
Phys. Rev. A
47
,
143
(
1993
).
16.
E.
Eliav
,
U.
Kaldor
, and
Y.
Ishikawa
,
Phys. Rev. A
50
,
1121
(
1994
).
17.
Experimental EAs taken from
T.
Andersen
,
H. K.
Haugen
, and
H.
Hotop
,
J. Phys. Chem. Ref. Data
28
,
1511
(
1999
);
EA of K from
K. T.
Andersen
,
J.
Sandström
,
I. Yu.
Kian
,
D.
Hanstorp
, and
D. J.
Pegg
,
Phys. Rev. A
62
,
022503
(
2000
).
18.
P.
Indelicato
,
O.
Gorceix
, and
J. P.
Desclaux
,
J. Phys. B
20
,
651
(
1987
).
19.
Y.-K.
Kim
, in
Atomic Processes in Plasmas
, edited by
Y.-K.
Kim
and
R. C.
Elton
AIP Conf. Proc.
No.
206
(
AIP
, New York,
1990
), p.
19
.
20.
M. J.
Vilkas
and
Y.
Ishikawa
,
Phys. Rev. A
68
,
012503
(
2003
);
M. J.
Vilkas
and
Y.
Ishikawa
,
J. Phys. B
37
,
1803
(
2004
).
21.
E.
Eliav
,
M. J.
Vilkas
,
Y.
Ishikawa
, and
U.
Kaldor
,
Chem. Phys.
311
,
163
(
2005
).
You do not currently have access to this content.