Free-volume theory for understanding depletion phenomena in mixtures of two species is generally derived using scaled-particle theory for those specific entities. Here we first give a general scaled-particle method for convex bodies in terms of the characteristic geometrical measures of the depletion agent, i.e., its volume, surface area, and integrated mean curvature, in mixtures with hard spheres. Second, we show that similar results can be derived from fundamental-measure theory. This different approach allows us to get a deep insight into the meaning of the various contributions to the theory from a geometrical point of view. From these two methods we arrive at a generalized “recipe” to free-volume theory. This recipe can be based on a desired equation of state for any convex shape of the depletion agents and is also valid for (polydisperse) mixtures of those. This is illustrated by mixtures of spheres with ellipsoids, spheres with several geometries as models for disklike mesogens, e.g., gibbsite, as well as depletion of spheres due to bar-shaped colloids, e.g., goethite.

1.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
, Cambridge,
1989
).
2.
D. F.
Evans
and
H.
Wennerström
,
The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet
, 2nd ed. (
Wiley-VCH
, New York,
1999
).
3.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
4.
S.
Asakura
and
F.
Oosawa
,
J. Polym. Sci.
32
,
183
(
1958
).
5.
A.
Vrij
,
Pure Appl. Chem.
48
,
471
(
1976
).
6.
R.
Roth
,
R.
Evans
, and
S.
Dietrich
,
Phys. Rev. E
62
,
5360
(
2000
).
7.
S.
Sanyal
,
N.
Easwar
,
S.
Ramaswamy
, and
A. K.
Sood
,
Europhys. Lett.
18
,
107
(
1992
).
8.
J. S.
van Duijneveldt
,
A. W.
Heinen
, and
H. N.W.
Lekkerkerker
,
Europhys. Lett.
21
,
369
(
1993
).
9.
P. D.
Kaplan
,
J. L.
Rouke
,
A. G.
Yodh
, and
D. J.
Pine
,
Phys. Rev. Lett.
72
,
582
(
1994
).
10.
A. D.
Dinsmore
,
A. G.
Yodh
, and
D. J.
Pine
,
Phys. Rev. E
52
,
4045
(
1995
).
11.
U.
Steiner
,
A.
Meller
, and
J.
Stavans
,
Phys. Rev. Lett.
74
,
4750
(
1995
).
12.
A.
Imhof
and
J. K.G.
Dhont
,
Phys. Rev. Lett.
75
,
1662
(
1995
).
13.
T.
Biben
and
J. P.
Hansen
,
Phys. Rev. Lett.
66
,
2215
(
1991
).
14.
T.
Biben
and
J. P.
Hansen
,
J. Phys.: Condens. Matter
3
,
65
(
1991
).
15.
H. N.W.
Lekkerkerker
and
A.
Stroobants
,
Physica A
195
,
387
(
1993
).
16.
W. C.K.
Poon
and
P. B.
Warren
,
Europhys. Lett.
28
,
513
(
1994
).
17.
18.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. Lett.
81
,
2268
(
1998
).
19.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. Lett.
82
,
117
(
1999
).
20.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. E
59
,
5744
(
1999
).
21.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
, Oxford,
1982
) (
Dover
, reprint,
2002
).
22.
R.
Tuinier
,
J.
Rieger
, and
C. G.
de Kruif
,
Adv. Colloid Interface Sci.
103
,
1
(
2003
), and references therein.
23.
G. H.
Koenderink
,
G. A.
Vliegenthart
,
S. G.J.M.
Kluijtmans
,
A.
van Blaaderen
,
A. P.
Philipse
, and
H. N.W.
Lekkerkerker
,
Langmuir
15
,
4683
(
1999
).
24.
G. A.
Vliegenthart
,
A.
van Blaaderen
, and
H. N.W.
Lekkerkerker
,
Faraday Discuss.
112
,
173
(
1999
).
25.
S. M.
Oversteegen
,
J. E.G.J.
Wijnhoven
,
C.
Vonk
, and
H. N.W.
Lekkerkerker
,
J. Phys. Chem. B
18
,
18158
(
2004
).
26.
P. G.
Bolhuis
and
D.
Frenkel
,
J. Chem. Phys.
101
,
9869
(
1994
).
27.
G. A.
Vliegenthart
and
H. N.W.
Lekkerkerker
,
J. Chem. Phys.
111
,
4153
(
1999
).
28.
Z.
Dogic
,
D.
Frenkel
, and
S.
Fraden
,
Phys. Rev. E
62
,
3925
(
2000
).
29.
R.
Roth
,
J. M.
Brader
, and
M.
Schmidt
,
Europhys. Lett.
63
,
549
(
2003
).
30.
L.
Helden
,
R.
Roth
,
G. H.
Koenderink
,
P.
Leiderer
, and
C.
Bechinger
,
Phys. Rev. Lett.
90
,
048301
(
2003
).
31.
Y.
Mao
,
M. E.
Cates
, and
H. N.W.
Lekkerkerker
,
Phys. Rev. Lett.
75
,
4548
(
1995
).
32.
Y.
Mao
,
M. E.
Cates
, and
H. N.W.
Lekkerkerker
,
J. Chem. Phys.
106
,
3721
(
1997
).
33.
R.
Roth
,
J. Phys.: Condens. Matter
15
,
S277
(
2003
).
34.
S. M.
Oversteegen
,
C.
Vonk
,
J. E.G.J.
Wijnhoven
, and
H. N.W.
Lekkerkerker
,
Phys. Rev. E
71
,
041406
(
2005
).
35.
S. M.
Oversteegen
and
H. N.W.
Lekkerkerker
,
J. Chem. Phys.
120
,
2470
(
2004
).
36.
L.
Harnau
and
S.
Dietrich
,
Phys. Rev. E
69
,
051501
(
2004
).
37.
H. N.W.
Lekkerkerker
,
W. C.K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
,
Europhys. Lett.
20
,
559
(
1992
).
38.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
39.
H.
Reiss
,
H. L.
Frisch
,
E.
Helfand
, and
J. L.
Lebowitz
,
J. Chem. Phys.
32
,
119
(
1960
).
40.
J. L.
Lebowitz
,
E.
Helfand
, and
E.
Praestgaard
,
J. Chem. Phys.
43
,
774
(
1965
).
41.
Y.
Rosenfeld
,
J. Chem. Phys.
89
,
4272
(
1988
).
42.
43.
Y.
Rosenfeld
,
Phys. Rev. E
50
,
R3318
(
1994
).
44.
Y.
Rosenfeld
,
Mol. Phys.
86
,
637
(
1995
).
45.
M.
Schmidt
,
H.
Löwen
,
J. M.
Brader
, and
R.
Evans
,
Phys. Rev. Lett.
85
,
1934
(
2000
).
46.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
47.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
48.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic
, New York,
1986
).
49.
W. W.
Wood
,
J. Chem. Phys.
20
,
1334
(
1952
).
50.
D.
Frenkel
and
A. J.C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
51.
J.
Steiner
,
Mber. Preuss. Akad. Wiss.
2
,
114
(
1840
);
J.
Steiner
,
Gesammelte Werke
(
Chelsea Publ. Co.
, New York,
1971
), Vol.
2
.
52.
M. A.
Cotter
and
D. C.
Wacker
,
Phys. Rev. A
18
,
2669
(
1978
).
53.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
54.
P.
Bryk
,
R.
Roth
,
K. R.
Mecke
, and
S.
Dietrich
,
Phys. Rev. E
68
,
031602
(
2003
).
55.
P.-M.
König
,
R.
Roth
, and
K. R.
Mecke
,
Phys. Rev. Lett.
93
,
160601
(
2004
).
56.
P.-M.
König
,
P.
Bryk
,
K. R.
Mecke
, and
R.
Roth
,
Europhys. Lett.
69
,
832
(
2005
).
57.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
,
J. Chem. Phys.
54
,
1523
(
1971
).
58.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
59.
Y.-X
Yu
and
J.
Wu
,
J. Chem. Phys.
117
,
10156
(
2002
).
60.
Y.
Rosenfeld
,
J. Chem. Phys.
89
,
4272
(
1988
).
61.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
51
,
627
(
1949
).
62.
D.
Frenkel
,
J. Chem. Phys.
91
,
4912
(
1987
);
D.
Frenkel
,
J. Chem. Phys.
92
,
5315
E
(
1988
).
63.
D.
Frenkel
and
R.
Eppenga
,
Phys. Rev. E
49
,
1089
(
1982
).
64.
R.
Eppenga
and
D.
Frenkel
,
Mol. Phys.
52
,
1303
(
1984
).
65.
S.-D.
Zhang
,
P. A.
Reynolds
, and
J. S.
van Duijneveldt
,
J. Chem. Phys.
117
,
9947
(
2002
).
66.
D.
van der Beek
,
T.
Schilling
, and
H. N.W.
Lekkerkerker
,
J. Chem. Phys.
121
,
5423
(
2004
).
67.
M.
Piech
and
J. Y.
Walz
,
J. Colloid Interface Sci.
232
,
86
(
2000
).
68.
A. M.
Wierenga
,
T. A.J.
Lenstra
, and
A. P.
Philipse
,
Colloids Surf., A
134
,
359
(
1998
).
69.
B. J.
Lemaire
,
P.
Davidson
,
J.
Ferré
,
J. P.
Jamet
,
P.
Panine
,
I.
Dozov
, and
J. P.
Jolivet
,
Phys. Rev. Lett.
88
,
125507
(
2002
).
70.
B. J.
Lemaire
,
P.
Davidson
,
J.
Ferré
,
J. P.
Jamet
,
D.
Petermann
,
I.
Dozov
, and
J. P.
Jolivet
,
Eur. Phys. J. E
13
,
291
(
2004
).
71.
C.
Graf
,
D. L.J.
Vossen
,
A.
Imhof
, and
A.
van Blaaderen
,
Langmuir
19
,
6693
(
2003
).
72.
J. M.
Brader
, Ph.D. thesis,
University of Bristol
,
2001
.
You do not currently have access to this content.