Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born–Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born–Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×105Å and 0.02° for water. The mass-independent [Born–Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm1 (or the lower ones to better than 0.0035cm1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born–Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of H2O16, obtained from experimentally determined A0 and B0 rotational constants corrected empirically to obtain equilibrium rotational constants, are resp=0.95777Å and θesp=104.48°.

1.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys.
84
,
457
(
1927
).
2.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
, New York,
1954
).
3.
P. R.
Bunker
and
P.
Jensen
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
, Chichester,
2000
), pp.
3
11
.
4.
P. G.
Mezey
,
Potential Energy Hypersurfaces
(
Elsevier
, New York,
1979
).
5.
J. N.
Murrell
,
S.
Carter
,
S. C.
Farantos
,
P.
Huxley
, and
A. J. C.
Varandas
,
Molecular Potential Energy Surfaces
(
Wiley
, New York,
1984
).
6.
A. G.
Császár
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
, Chichester,
2000
), pp.
15
68
.
7.
H.
Sellers
and
P.
Pulay
,
Chem. Phys. Lett.
103
,
463
(
1984
).
8.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
84
,
4481
(
1986
).
9.
W.
Kutzelnigg
,
Mol. Phys.
90
,
909
(
1997
).
10.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
11.
E. F.
Valeev
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
3921
(
2003
).
12.
J. K. G.
Watson
,
J. Mol. Spectrosc.
223
,
39
(
2004
).
13.
J.
Demaison
,
G.
Wlodarczak
, and
H. D.
Rudolph
,
Advances in Molecular Structure Research
(
JAI
, Greenwich, CT
1997
), Vol.
3
, pp.
1
51
.
14.
L.
Margules
,
J.
Demaison
, and
J. E.
Boggs
,
J. Phys. Chem. A
103
,
7632
(
1999
).
15.
J.
Demaison
,
J.
Breidung
,
W.
Thiel
, and
D.
Papoušek
,
Struct. Chem.
10
,
129
(
1999
).
16.
K.
Kuchitsu
and
Y.
Morino
,
Bull. Chem. Soc. Jpn.
38
,
805
(
1965
).
17.
K.
Kuchitsu
and
S. J.
Cyvin
, in
Molecular Structure and Vibrations
, edited by
S. J.
Cyvin
(
Elsevier
, Amsterdam,
1972
), p.
183
.
18.
K.
Kuchitsu
, in
Accurate Molecular Structures: Their Determination and Importance
, edited by
A.
Domenicano
and
I.
Hargittai
(
Oxford University Press
, Oxford,
1992
), pp.
14
46
.
19.
J. K. G.
Watson
,
J. Mol. Spectrosc.
223
,
39
(
2004
).
20.
M.
Cafiero
and
L.
Adamowicz
,
Chem. Phys. Lett.
387
,
136
(
2004
).
21.
B. T.
Sutcliffe
, in
Mathematical Models and Methods for Ab Initio Quantum Chemistry
,
Lecture Notes in Chemistry
Vol.
74
, edited by
M.
Defranceschi
and
C.
le Bris
(
Springer
, New York,
2000
), pp.
3
14
.
22.
B. T.
Sutcliffe
,
Int. J. Quantum Chem.
90
,
66
(
2002
).
23.
24.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
Vol.
II
(
van Nostrand
, Toronto,
1945
).
25.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
,
J. Chem. Phys.
24
,
1139
(
1956
).
26.
K.
Kuchitsu
and
L. S.
Bartell
,
J. Chem. Phys.
36
,
2460
(
1961
).
27.
Landolt-Börnstein
,
New Series
Vol.
II/7
(
Springer
, Berlin,
1976
).
28.
A. R.
Hoy
and
P. R.
Bunker
,
J. Mol. Spectrosc.
74
,
1
(
1979
).
29.
M.
Nakata
and
K.
Kuchitsu
,
J. Mol. Struct.
320
,
179
(
1994
).
30.
P.
Jensen
,
S. A.
Tashkun
, and
V. G.
Tyuterev
,
J. Mol. Spectrosc.
168
,
271
(
1994
).
31.
H.
Partridge
and
D. W.
Schwenke
,
J. Chem. Phys.
106
,
4618
(
1997
).
32.
S. V.
Shirin
,
O. L.
Polyansky
,
N. F.
Zobov
,
P.
Barletta
, and
J.
Tennyson
,
J. Chem. Phys.
118
,
2124
(
2003
).
33.
K.
Kuchitsu
and
K.
Oyanagi
,
Faraday Discuss. Chem. Soc.
62
,
20
(
1977
).
34.
H. D.
Rudolph
, in
Advances in Molecular Structure Research
(
JAI
, Greenwich, CT,
1995
), Vol.
1
, p.
63
.
35.
A. G.
Császár
, in
Encyclopedia for Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
 et al. (
Wiley
, Chichester,
1998
), Vol.
1
, pp.
13
30
.
36.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
(
Wiley
, New York,
1984
).
37.
W. D.
Allen
,
E.
Czinki
, and
A. G.
Császár
,
Chem.-Eur. J.
10
,
4512
(
2004
).
38.
J. M. L.
Martin
,
Chem. Phys. Lett.
283
,
283
(
1998
).
39.
J. M. L.
Martin
,
Chem. Phys. Lett.
292
,
411
(
1998
).
40.
B.
Temelso
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
3068
(
2004
).
41.
W.
Cencek
,
J.
Rychlewski
,
R.
Jaquet
, and
W.
Kutzelnigg
,
J. Chem. Phys.
108
,
2831
(
1998
).
42.
O. L.
Polyansky
,
A. G.
Császár
,
S. V.
Shirin
,
N. F.
Zobov
,
P.
Barletta
,
J.
Tennyson
,
D. W.
Schwenke
, and
P. J.
Knowles
,
Science
299
,
539
(
2003
).
43.
G.
Czakó
,
T.
Furtenbacher
,
A. G.
Császár
, and
V.
Szalay
,
Mol. Phys.
102
,
2411
(
2004
).
44.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
45.
T.
Furtenbacher
,
G.
Czakó
,
A. G.
Császár
, and
V.
Szalay
,
J. Mol. Struct.
(submitted).
46.
J.
Tennyson
,
M. A.
Kostin
,
P.
Barletta
,
G. J.
Harris
,
O. L.
Polyansky
,
J.
Ramanlal
, and
N. F.
Zobov
,
Comput. Phys. Commun.
163
,
85
(
2004
).
47.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.

The (aug-)cc-pVXZ basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830.

49.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
50.
MOLPRO (version 2002.1) is a package of ab initio electronic structure programs designed by
H.-J.
Werner
and
P. J.
Knowles
.
51.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
52.
P.
Pyykkö
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
53.
K.
Balasubramanian
,
Relativistic Effects in Chemistry, Part A: Theory and Techniques and Part B: Applications
(
Wiley
, New York,
1997
).
54.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
, and
H. M.
Quiney
,
Mol. Phys.
99
,
1769
(
2001
), and references therein.
55.
A. G.
Császár
,
J. S.
Kain
,
O. L.
Polyansky
,
N. F.
Zobov
, and
J.
Tennyson
,
Chem. Phys. Lett.
293
,
317
(
1998
);
A. G.
Császár
,
J. S.
Kain
,
O. L.
Polyansky
,
N. F.
Zobov
, and
J.
Tennyson
,
Chem. Phys. Lett.
312
,
613
(E) (
1999
).
56.
H. M.
Quiney
,
P.
Barletta
,
G.
Tarczay
,
A. G.
Császár
,
O. L.
Polyansky
, and
J.
Tennyson
,
Chem. Phys. Lett.
344
,
413
(
2001
).
57.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
897
(
1992
).
58.
The package also contains modified versions of the MOLECULE Gaussian integral program of
J.
Almlöf
and
P. R.
Taylor
, the ABACUS integral derivative program written by
T. U.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
P. R.
Taylor
, and the PROPS property evaluation integral code of
P. R.
Taylor
.
59.
DALTON, a molecular electronic structure program, Release 1.2 (
2001
), written by
T. U.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
 et al.
60.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
,
Adv. Quantum Chem.
32
,
1
(
1999
).
61.
I. P.
Grant
and
H. M.
Quiney
,
Int. J. Quantum Chem.
80
,
283
(
2000
).
62.
H. A.
Bethe
and
E. E.
Salpeter
,
Quantum Mechanics of One- and Two-Electron Atoms
(
Springer
, Berlin,
1957
).
63.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
,
Chem. Phys. Lett.
290
,
473
(
1998
).
64.
P.
Pyykkö
,
K.
Dyall
,
A. G.
Császár
,
G.
Tarczay
,
O. L.
Polyansky
, and
J.
Tennyson
,
Phys. Rev. A
63
,
024502
(
2001
).
65.
J.
Tennyson
,
P.
Barletta
,
M. A.
Kostin
,
O. L.
Polyansky
, and
N. F.
Zobov
,
Spectrochim. Acta, Part A
58
,
663
(
2002
).
66.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
67.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
9751
(
1998
).
68.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
,
2983
(
1993
).
69.
A. G.
Császár
and
W. D.
Allen
,
J. Chem. Phys.
104
,
2746
(
1996
).
70.
J. M. L.
Martin
,
J. Chem. Phys.
242
,
343
(
1995
).
71.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
,
V.
Szalay
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
110
,
11971
(
1999
).
72.
E. F.
Valeev
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
A. G.
Császár
,
J. Chem. Phys.
114
,
2875
(
2001
).
73.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
74.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
 et al.,
J. Chem. Phys.
121
,
11599
(
2004
).
75.
J.
Tennyson
,
N. F.
Zobov
,
R.
Williamson
,
O. L.
Polyansky
, and
P. F.
Bernath
,
J. Phys. Chem. Ref. Data
30
,
735
(
2001
).
76.
R. A.
Toth
,
J. Opt. Soc. Am. B
9
,
462
(
1992
).
77.
S. N.
Mikhailenko
,
V. G.
Tyuterev
, and
G.
Mellau
,
J. Mol. Spectrosc.
217
,
195
(
2003
).
78.
R. A.
Toth
,
J. Mol. Spectrosc.
162
,
41
(
1993
).
79.
S. V.
Shirin
,
P.
Barletta
,
O. L.
Polyansky
,
N. F.
Zobov
,
A. G.
Császár
, and
J.
Tennyson
,
J. Chem. Phys.
(to be published).
80.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
81.
D.
Kivelson
and
E. B.
Wilson
,
J. Chem. Phys.
21
,
1229
(
1953
).
82.
F. C.
De Lucia
,
P.
Helminger
,
R. L.
Cook
, and
W.
Gordy
,
Phys. Rev. A
5
,
487
(
1972
).
83.
A. V.
Burenin
,
T. M.
Fevral’skikh
,
E. N.
Karyakin
,
O. L.
Polyansky
, and
S. M.
Shapin
,
J. Mol. Spectrosc.
100
,
182
(
1983
).
84.
S. P.
Belov
,
I. N.
Kozin
,
O. L.
Polyansky
,
M. Yu.
Tretyakov
, and
N. F.
Zobov
,
Opt. Spectrosc.
62
,
735
(
1987
).
85.
W. S.
Benedict
,
S. A.
Clough
,
L.
Frenkel
, and
T. E.
Sullivan
,
J. Chem. Phys.
53
,
2565
(
1970
).
86.
J. K.
Messer
,
F. C.
De Lucia
, and
P.
Helminger
,
J. Mol. Spectrosc.
105
,
139
(
1984
).
87.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
88.
I. M.
Mills
,
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic
, New York,
1972
).
89.
P.
Pulay
,
W.
Meyer
, and
J. E.
Boggs
,
J. Chem. Phys.
68
,
5077
(
1978
).
90.
D. A.
Clabo
,
W. D.
Allen
,
Y.
Yamaguchi
,
R. B.
Remington
, and
H. F.
Schaefer
 III
,
Chem. Phys.
123
,
187
(
1988
).
91.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Császár
,
D. A.
Clabo
,
R. B.
Remington
, and
H. F.
Schaefer
 III
,
Chem. Phys.
145
,
427
(
1990
).
93.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research
, Ottawa,
1998
).
94.
A.
Ernesti
and
J. M.
Hutson
,
Chem. Phys. Lett.
222
,
257
(
1994
).
95.
A. G.
Császár
and
I. M.
Mills
,
Spectrochim. Acta, Part A
53
,
1101
(
1997
).
96.
F.
Matsushima
,
H.
Odashima
,
T.
Iwasaki
,
S.
Tsunekawa
, and
K.
Tagaki
,
J. Mol. Struct.
352
,
371
(
1995
).
97.
F.
Pawlowski
,
P.
Jørgensen
,
J.
Olsen
,
F.
Hegelund
,
T.
Helgaker
,
J.
Gauss
,
K. L.
Bak
, and
J. F.
Stanton
,
J. Chem. Phys.
116
,
6482
(
2002
).
98.
D.
Papoušek
and
M. R.
Aliev
,
Molecular Vibrational-Rotational Spectra
(
Elsevier
, Amsterdam,
1982
).
99.
N. F.
Zobov
,
O. L.
Polyansky
,
C. R.
Le Sueur
, and
J.
Tennyson
,
Chem. Phys. Lett.
260
,
381
(
1996
).
100.
B. F.
Burke
and
M. W. P.
Strandberg
,
Phys. Rev.
90
,
303
(
1953
).
101.
J.
Verhoeven
and
A.
Dymanus
,
J. Chem. Phys.
52
,
3222
(
1970
).
102.
K.
Ruud
,
J.
Vaara
,
J.
Lounila
, and
T.
Helgaker
,
Chem. Phys. Lett.
297
,
467
(
1998
).
103.
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
J. Mol. Struct.: THEOCHEM
506
,
335
(
2000
).
104.
J. K. G.
Watson
,
J. Mol. Spectrosc.
45
,
99
(
1973
).
105.
E.
Tiemann
and
J. F.
Ogilvie
,
J. Mol. Spectrosc.
165
,
377
(
1994
).
106.
J. F.
Ogilvie
,
Chem. Phys. Lett.
267
,
590
(
1997
).
107.
R. J.
Le Roy
and
Y.
Huang
,
J. Mol. Struct.: THEOCHEM
591
,
175
(
2002
).
108.
I.
Morino
,
K.
Matsumura
, and
K.
Kawaguchi
,
J. Mol. Spectrosc.
174
,
123
(
1995
).
109.
M.
Zachwieja
,
J. Mol. Spectrosc.
170
,
285
(
1995
).
110.
T.
Amano
,
J. Mol. Spectrosc.
103
,
436
(
1984
).
111.
R.
Colin
,
P. F.
Coheur
,
M.
Kiseleva
,
A. C.
Vandaele
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
214
,
225
(
2002
).
112.
M. C.
Abrams
,
S. P.
Davis
,
M. L. P.
Rao
, and
R.
Engleman
,
J. Mol. Spectrosc.
165
,
57
(
1994
).
113.
See EPAPS Document No. E-JCPSA6-122-002524 for the relevant input files employed for running the more widely utilized DVR3D program. This document can be reached via a direct link in the online article's HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.