We present for the first time an exact quantum study of spin–orbit-induced intersystem crossing effects in the title reaction. The time-dependent wave-packet method, combined with an extended split operator scheme, is used to calculate the fine-structure resolved cross section. The calculation involves four electronic potential-energy surfaces of the A1 state [J. Dobbyn and P. J. Knowles, Faraday Discuss.110, 247 (1998)], the A3 and the two degenerate A3 states [S. Rogers, D. Wang, A. Kuppermann, and S. Wald, J. Phys. Chem. A104, 2308 (2000)], and the spin–orbit couplings between them [B. Maiti, and G. C. Schatz, J. Chem. Phys.119, 12360 (2003)]. Our quantum dynamics calculations clearly demonstrate that the spin–orbit coupling between the triplet states of different symmetries has the greatest contribution to the intersystem crossing, whereas the singlet-triplet coupling is not an important effect. A branch ratio of the spin state Π32 to Π12 of the product OH was calculated to be 2.75, with collision energy higher than 0.6eV, when the wave packet was initially on the triplet surfaces. The quantum calculation agrees quantitatively with the previous quasiclassical trajectory surface hopping study.

1.
M. H.
Alexander
,
H. J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
109
,
5710
(
1998
).
2.
P.
Honvault
and
J. M.
Launay
,
Chem. Phys. Lett.
303
,
657
(
1999
).
3.
S. A.
Nizkorodov
,
W. W.
Harper
,
W. B.
Chapman
,
B. W.
Blackmon
, and
D. J.
Nesbitt
,
J. Chem. Phys.
111
,
8404
(
1999
).
4.
M. H.
Alexander
,
D. E.
Manolopoulos
, and
H. J.
Werner
,
J. Chem. Phys.
113
,
11084
(
2000
).
5.
Y.
Zhang
,
T. X.
Xie
,
K. L.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
119
,
12921
(
2003
).
6.
Y.
Zhang
,
T. X.
Xie
, and
K. L.
Han
,
J. Phys. Chem. A
107
,
10893
(
2003
).
7.
Y.
Zhang
,
T. X.
Xie
,
K. L.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
120
,
6000
(
2004
).
8.
S. H.
Lee
and
K. P.
Liu
,
J. Chem. Phys.
111
,
6253
(
1999
).
9.
N.
Balucani
,
D.
Skouteris
,
L.
Cartechini
 et al.,
Phys. Rev. Lett.
91
,
013201
(
2003
).
10.
G. C.
Schatz
,
M.
Hankel
,
T. W. J.
Whiteley
, and
J. N. L.
Connor
,
J. Phys. Chem. A
107
,
7278
(
2003
).
11.
G. C.
Schatz
,
P.
McCabe
, and
J. N. L.
Connor
,
Faraday Discuss.
110
,
139
(
1998
).
12.
M. R.
Hoffmann
and
G. C.
Schatz
,
ACS Symp. Ser.
828
,
329
(
2002
).
13.
M. R.
Hoffmann
and
G. C.
Schatz
,
J. Chem. Phys.
113
,
9456
(
2000
).
14.
B.
Maiti
and
G. C.
Schatz
,
J. Chem. Phys.
119
,
12360
(
2003
).
15.
K. C.
Tang
,
K. L.
Liu
, and
I. C.
Chen
,
Chem. Phys. Lett.
386
,
437
(
2004
).
16.
L.
Bonnet
,
J. C.
Rayez
, and
P.
Casavecchia
,
Phys. Chem. Chem. Phys.
2
,
741
(
2000
).
17.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
,
P.
Casavecchia
,
M.
van Beek
,
G. G.
Volpi
,
L.
Bonnet
, and
J. C.
Rayez
,
Faraday Discuss.
113
,
133
(
1999
).
18.
G. M.
Sweeney
,
A.
Watson
, and
K. G.
McKendrick
,
J. Chem. Phys.
106
,
9172
(
1997
).
19.
T. X.
Xie
,
Y.
Zhang
,
M. Y.
Zhao
, and
K. L.
Han
,
Phys. Chem. Chem. Phys.
5
,
2034
(
2003
).
20.
M.
Braunstein
,
S.
Adler-Golden
,
B.
Maiti
, and
G. C.
Schatz
,
J. Chem. Phys.
120
,
4316
(
2004
).
21.
N.
Balakrishnan
,
J. Chem. Phys.
121
,
6346
(
2004
).
22.
S.
Rogers
,
D.
Wang
,
A.
Kuppermann
, and
S.
Walch
,
J. Phys. Chem. A
104
,
2308
(
2000
).
23.
J.
Dobbyn
and
P. J.
Knowles
,
Faraday Discuss.
110
,
247
(
1998
).
24.
D. J.
Garton
,
T. K.
Minton
,
B.
Maiti
,
D.
Troya
, and
G. C.
Schatz
,
J. Chem. Phys.
118
,
1585
(
2003
).
You do not currently have access to this content.