An ab initio study was performed in clusters up to four H2S molecules and benzene using calculations at MP26-31+G* and MP2/aug-cc-pVDZ levels. Differences between both sets of calculations show the importance of using large basis sets to describe the intermolecular interactions in this system. The obtained binding energies reflect that benzene has not the same behavior in H2S as in water, pointing to a higher solubility of this molecule in H2S than in water. The Bz-cluster binding energy was fitted to an asymptotic representation with a maximum value of the energy of −8.00 kcal/mol that converges in a cluster with 12 H2S molecules. The obtained intermolecular distance in the BzH2S dimer is similar to the experimental value; however, the difference is much larger for the angles defining the orientation. The influence of benzene produces a distortion of the (H2S)n clusters, so the intermolecular distances change with regard to the (H2S)n isolated clusters. Frequency shifts are larger in clusters with benzene than without it. In the smallest clusters the shift associated to the stretching of the S–H bonded to benzene is the largest one, but for the cluster with three H2S molecules this stretching is combined with the other S–H stretching of the molecule so the resulting shift is not the largest one.

1.
A.
Ergdahl
and
B.
Nelander
,
J. Phys. Chem.
91
,
2253
(
1987
).
2.
A. W.
Garrett
and
T. S.
Zwier
,
J. Chem. Phys.
96
,
3402
(
1992
).
3.
R. N.
Pribble
and
T. S.
Zwier
,
Science
265
,
75
(
1994
).
4.
R. N.
Pribble
,
A. W.
Garrett
,
K.
Haber
, and
T. S.
Zwier
,
J. Chem. Phys.
103
,
531
(
1995
).
5.
H. S.
Gutowsky
,
T.
Emilsson
, and
E.
Arunan
,
J. Chem. Phys.
99
,
4883
(
1993
).
6.
S.
Suzuki
,
P. G.
Green
,
R. E.
Bumgarner
,
S.
Dasgupta
,
W. A.
Goddard
 III
, and
G. A.
Blake
,
Science
265
,
75
(
1994
).
7.
P. M.
Maxton
,
M. W.
Schaeffer
, and
P. M.
Felker
,
Chem. Phys. Lett.
241
,
603
(
1995
).
8.
J. D.
Augspurger
,
C. E.
Dykstra
, and
T. S.
Zwier
,
J. Phys. Chem.
97
,
980
(
1993
).
9.
G.
Karlström
,
P.
Linse
,
A.
Wallqvist
, and
B.
Jönsson
,
J. Am. Chem. Soc.
105
,
3777
(
1983
).
10.
J. L.
Brédas
and
G. B.
Street
,
J. Chem. Phys.
90
,
7291
(
1989
).
11.
B. V.
Cheney
and
M. W.
Schulz
,
J. Phys. Chem.
94
,
6268
(
1990
).
12.
S. Y.
Fredericks
,
K. D.
Jordan
, and
T. S.
Zwier
,
J. Phys. Chem.
100
,
7810
(
1996
).
13.
J. M.
Sorenson
,
J. K.
Gregory
, and
D. C.
Clary
,
J. Chem. Phys.
106
,
849
(
1997
).
14.
C. J.
Gruenloh
,
J. R.
Carney
,
F. C.
Hagmeister
,
C. A.
Arrington
,
T. S.
Zwier
,
S. Y.
Fredericks
,
J. T.
Wood
 III
, and
K. D.
Jordan
,
J. Chem. Phys.
109
,
6601
(
1998
).
15.
K. S.
Kim
,
P.
Tarakeshwar
, and
J. Y.
Lee
,
Chem. Rev. (Washington, D.C.)
100
,
4145
(
2000
).
16.
P.
Tarakeshwar
,
K. S.
Kim
,
S.
Djafari
,
K.
Buchhold
,
B.
Reimann
,
H.-D.
Barth
, and
B.
Brutschy
,
J. Chem. Phys.
114
,
4016
(
2001
).
17.
F.-M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
103
,
950
(
1995
).
18.
E.
Arunan
,
T.
Emilsson
,
H. S.
Gutowsky
,
G. T.
Fraser
,
G.
de Oliveira
, and
C. E.
Dykstra
,
J. Chem. Phys.
117
,
9766
(
2002
).
19.
G.
de Oliveira
and
C. E.
Dykstra
,
Chem. Phys. Lett.
243
,
158
(
1995
).
20.
H.
Tsujii
,
K.
Takizawa
, and
S.
Koda
,
Chem. Phys.
285
,
319
(
2002
).
21.
T. P.
Tauer
,
M. E.
Derrick
, and
C. D.
Sherrill
,
J. Phys. Chem. A
109
,
191
(
2005
).
22.
F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
23.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 98, Revision A.9,
Gaussian, Inc.
, Pittsburgh, PA,
1998
.
You do not currently have access to this content.