In this paper, the calculation of electric-field-like properties based on higher-order Douglas–Kroll–Hess (DKH) transformations is discussed. The electric-field gradient calculated within the Hartree–Fock self-consistent field framework is used as a representative property. The properties are expressed as an analytic first derivative of the four-component Dirac energy and the nth-order DKH energy, respectively. The differences between a “forward” transformation of the relativistic energy or the “back transformation” of the wave function is discussed in some detail. Detailed test calculations were carried out on the electric-field gradient at the halogen nucleus in the series HX(X=F,Cl,Br,I,At) for which extensive reference data are available. The DKH method is shown to reproduce (spin-free) four-component Dirac–Fock results to an accuracy of better than 99% which is significantly closer than previous DKH studies. The calculations of both the Hamiltonian and the property operator are shown to be essentially converged after the second-order transformation, even for elements as heavy as At. In addition, we have obtained results within the density-functional framework using the DKHZ and zeroth-order regular approximation (ZORA) methods. The latter results included picture-change effects at the scalar relativistic variant of the ZORA-4 level and were shown to be in quantitative agreement with earlier results obtained by van Lenthe and Baerends. The picture-change effects are somewhat smaller for the ZORA method compared to DKH. For heavier elements significant differences in the field gradients predicted by the two methods were found. Based on comparison with four-component Dirac–Kohn–Sham calculations, the DKH results are more accurate. Compared to the spin-free Dirac–Kohn–Sham reference values, the ZORA-4 formalism did not improve the results of the ZORA calculations.

1.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
119
,
2963
(
2003
).
2.
T.
Fleig
and
L.
Visscher
,
Chem. Phys.
(in press).
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
);
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
, in
Relativistic Quantum Chemistry
,
Theoretical and Computational Chemistry
Vol.
1
, edited by
P.
Schwerdtfeger
(
Elsevier
, Amsterdam,
2002
), p.
622
;
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
, in
Recent Advances in Relativistic Molecular Theory
, edited by
K.
Hirao
and
Y.
Ishikawa
(
World Scientific
, Singapore,
2004
), p.
137
;
M.
Reiher
,
A.
Wolf
, and
B. A.
Hess
, in
Handbook of Theoretical and Computational Nanotechnology
, edited by
M.
Rieth
and
W.
Schommers
(in press).
4.
B. A.
Hess
and
C. M.
Marian
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
, New York,
2000
), p.
169
.
5.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
6.
K. G.
Dyall
and
E.
van Lenthe
,
J. Chem. Phys.
111
,
1366
(
1999
).
7.
T.
Nakajima
and
K.
Hirao
,
J. Chem. Phys.
113
,
7786
(
2000
).
8.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
117
,
9215
(
2002
).
9.
C.
van Wüllen
,
J. Chem. Phys.
120
,
7307
(
2004
).
10.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
);
[PubMed]
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
[PubMed]
11.
R.
Samzow
,
B. A.
Hess
, and
G.
Jansen
,
J. Chem. Phys.
96
,
1227
(
1992
);
C.
Park
and
J.
Almlöf
,
Chem. Phys. Lett.
231
,
269
(
1994
);
A.
Mateev
and
N.
Rösch
,
J. Chem. Phys.
118
,
3997
(
2003
);
J. C.
Boettger
,
Phys. Rev. B
62
,
7809
(
2000
).
12.
V.
Kellö
and
A. J.
Sadlej
,
Int. J. Quantum Chem.
68
,
159
(
1998
).
13.
V.
Kellö
,
A. J.
Sadlej
, and
B. A.
Hess
,
J. Chem. Phys.
105
,
1995
(
1996
).
14.
I.
Malkina
,
O. L.
Malkina
, and
V.
Malkin
,
Chem. Phys. Lett.
361
,
231
(
2002
).
16.
R.
Fukuda
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
118
,
1015
(
2003
);
R.
Fukuda
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
118
,
1027
(
2003
).
17.
E.
van Lenthe
and
E. J.
Baerends
,
J. Chem. Phys.
112
,
8279
(
2000
).
18.
E.
van Lenthe
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
108
,
4783
(
1998
);
E.
van Lenthe
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
107
,
2488
(
1997
);
S. K.
Wolff
,
T.
Ziegler
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
119
,
7689
(
1999
);
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
119
,
701
(
2003
);
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
120
,
11407
(
2004
);
[PubMed]
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
121
,
5618
(
2004
).
[PubMed]
19.
P.
Schwerdtfeger
,
M.
Pernpointner
, and
W.
Nazarewicz
, in
Calculation of NMR and EPR Parameters
, edited by
M.
Kaupp
,
M.
Bühl
, and
V.
Malkin
(
Wiley
, Weinheim,
2004
), p.
279
.
20.
V.
Kellö
and
A. J.
Sadlej
,
J. Chem. Phys.
120
,
9424
(
2004
);
[PubMed]
M.
Pernpointner
,
M.
Seth
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
108
,
6722
(
1998
).
21.
M.
Pernpointner
,
P.
Schwerdtfeger
, and
B. A.
Hess
,
Int. J. Quantum Chem.
76
,
371
(
2000
).
22.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
, and
J.
Oddershede
,
J. Chem. Phys.
109
,
9677
(
1998
).
23.
E. A. C.
Lucken
,
Nuclear Quadrupole Coupling Constants
(
Academic
, London, New York,
1969
).
24.
P.
Gütlich
,
R.
Link
, and
A.
Trautwein
,
Mössbauer Spectroscopy and Transition Metal Chemistry
(
Springer
, New York,
1978
).
25.
A.
Abragam
and
B.
Bleaney
,
Electron Paramagnetic Resonance of Transition Ions
(
Clarendon
, Oxford,
1970
).
26.
C. P.
Slichter
,
Principles of Magnetic Resonance
, 3rd ed. (
Springer
, Berlin,
1990
).
27.
H.
Frauenfelder
and
R. M.
Steffen
, in
Alpha-, Beta- and Gamma-Ray Spectroscopy
, edited by
K.
Siegbahn
(
North-Holland
, Amsterdam,
1968
), p.
997
.
29.
B. A.
Hess
,
C. M.
Marian
, and
S. D.
Peyerimhoff
, in
Modern Electronic Structure Theory
, edited by
D.
Yarkony
(
World Scientific
, Singapore,
1995
).
30.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
31.
T. D.
Newton
and
E. P.
Wigner
,
Rev. Mod. Phys.
21
,
400
(
1948
);
W. H. E.
Schwarz
,
P.
Schwerdtfeger
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Phys. B
23
,
3225
(
1990
).
32.
I.
Malkina
,
O. L.
Malkina
,
V.
Malkin
, and
M.
Kaupp
,
Chem. Phys. Lett.
396
,
268
(
2004
).
33.
F.
Neese
,
ORCA- an ab initio, Density Functional and Semiempirical Program Package, Version 2.4, revision 10, August 2004
(
Max Planck Institut für Bioanorganische Chemie
, Mülheim,
2004
).
34.
35.
M.
Pernpointer
and
P.
Schwerdtfeger
,
Chem. Phys. Lett.
295
,
347
(
1998
).
36.
T.
Helgaker
and
P. R.
Taylor
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
, Singapore,
1995
), p.
725
.
37.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
38.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
39.
G.
Herzberg
and
K. P.
Huber
,
Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules
. (
Van Nostrand Reinhold
, New York,
1979
).
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
41.
H. J. A.
Jensen
,
T.
Saue
,
L.
Visscher
 et al., a relativistic ab initio electronic structure program, release dirac04.0 (http://dirac.chem.sdu.dk),
2004
.
42.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
43.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
120
,
8624
(
2004
).
44.
L.
Visscher
and
E.
van Lenthe
,
Chem. Phys. Lett.
306
,
357
(
1999
).
You do not currently have access to this content.