We performed a series of successful experiments for the optimization of the population transfer from the ground to the first excited state in a complex solvated molecule (rhodamine 101 in methanol) using shaped excitation pulses at very low intensities (1 absorbed photon per 100–500 molecules per pulse). We found that the population transfer can be controlled and significantly enhanced by applying excitation laser pulses with crafted pulse shapes. The optimal shape was found in feedback-controlled experiments using a genetic search algorithm. The temporal profile of the optimal excitation pulse corresponds to a comb of subpulses regularly spaced by 150fs, whereas its spectrum consists of a series of well-resolved peaks spaced apart by approximately 6.5 nm corresponding to a frequency of 220cm1. This frequency matches very well with the frequency modulation of the population kinetics (period of 150fs), observed by excitation with a short (20fs) transform-limited laser pulse directly after excitation. In addition, an antioptimization experiment was performed under the same conditions. The difference in the population of the excited state for the optimal and antioptimal pulses reaches 30% even at very weak excitation. The results of optimization are reproducible and have clear physical meaning.

1.
T.
Brixner
and
G.
Gerber
,
ChemPhysChem
4
,
418
(
2003
).
2.
M.
Dantus
and
V. V.
Lozovoy
,
Chem. Rev. (Washington, D.C.)
104
,
1813
(
2004
).
3.
Y.
Watanabe
,
H.
Umeda
,
Y.
Ohtsuki
,
H.
Kono
, and
Y.
Fujimura
,
Chem. Phys.
217
,
317
(
1997
).
4.
Y.
Ohtsuki
,
M.
Sugawara
,
H.
Kono
, and
Y.
Fujimura
,
Bull. Chem. Soc. Jpn.
74
,
1167
(
2001
).
5.
M.
Shapiro
and
P.
Brumer
,
Rep. Prog. Phys.
66
,
859
(
2003
).
6.
R. S.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
7.
T.
Baumert
,
T.
Brixner
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Appl. Phys. B: Lasers Opt.
65
,
779
(
1997
).
8.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
,
919
(
1998
).
9.
T.
Brixner
,
N. H.
Damrauer
,
P.
Niklaus
, and
G.
Gerber
,
Nature (London)
414
,
57
(
2001
).
10.
T.
Brixner
,
N. H.
Damrauer
,
G.
Krampert
,
P.
Niklaus
, and
G.
Gerber
,
J. Mod. Opt.
50
,
539
(
2003
).
11.
T.
Brixner
,
N. H.
Damrauer
,
B.
Kiefer
, and
G.
Gerber
,
J. Chem. Phys.
118
,
3692
(
2003
).
12.
C. J.
Bardeen
,
V. V.
Yakovlev
,
J. A.
Squier
, and
K. R.
Wilson
,
J. Am. Chem. Soc.
120
,
13023
(
1998
).
13.
J. L.
Herek
,
W.
Wohlleben
,
R. J.
Cogdell
,
D.
Zeidler
, and
M.
Motzkus
,
Nature (London)
417
,
533
(
2002
).
14.
G.
Cerullo
,
C. J.
Bardeen
,
Q.
Wang
, and
C. V.
Shank
,
Chem. Phys. Lett.
262
,
362
(
1996
).
15.
I.
Pastirk
,
E. J.
Brown
,
Q. G.
Zhang
, and
M.
Dantus
,
J. Chem. Phys.
108
,
4375
(
1998
).
16.
V. V.
Lozovoy
,
I.
Pastirk
,
K. A.
Walowicz
, and
M.
Dantus
,
J. Chem. Phys.
118
,
3187
(
2003
).
17.
M. R.
Armstrong
,
P.
Plachta
,
P. A.
Ponomarev
, and
R. J. D.
Miller
,
Opt. Lett.
26
,
1152
(
2001
).
18.
S. A.
Kovalenko
,
A. L.
Dobryakov
,
J.
Ruthmann
, and
N. P.
Ernsting
,
Phys. Rev. A
59
,
2369
(
1999
).
19.
R.
Trebino
,
Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses
, 1st ed. (
Kluwer Academic
, Amsterdam,
2002
).
20.
T.
Karstens
and
K.
Kobs
,
J. Phys. Chem.
84
,
1871
(
1980
).
21.

The saturation energy density corresponds to the magnitude of the excitation which reduces the absorption coefficient of a thin optical layer by e times (see, e.g., Ref. 22)

22.
A.
Yariv
,
Introduction to Optical Electronics
(
Holt, Rinehart and Winston
, New York,
1971
).
23.
V. I.
Prokhorenko
,
M. V.
Melishchuk
, and
E. A.
Tikhonov
,
Zh. Tekh. Fiz.
51
,
955
(
1981
).
24.
V. I.
Prokhorenko
,
Zh. Tekh. Fiz.
51
,
2603
(
1981
).
25.
U.
Brackmann
,
Lambdachrome Laser Dyes
(
Lambda Physik GmbH
, Goettingen,
1986
).
26.
L. V.
Dao
,
J. Lumin.
106
,
243
(
2004
).
27.
H. L.
Fragnito
,
J.-Y.
Bigot
,
P. C.
Becker
, and
C. V.
Shank
,
Chem. Phys. Lett.
160
,
101
(
1989
).
28.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
, 1st ed. (
Oxford University Press
, New York,
1995
).
29.
V. I.
Prokhorenko
,
A.
Nagy
, and
R. J. D.
Miller
,
2004 Cross Border Workshop on Laser Science: From Nonlinear Optics to Biophotonics
,
Ottawa, ON, Canada
, 5–8 May
2004
(unpublished).
30.
A.
Yabushita
,
T.
Fuji
, and
T.
Kobayashi
,
Chem. Phys. Lett.
398
,
495
(
2004
).
31.
C. J.
Bardeen
,
V. V.
Yakovlev
,
K. R.
Wilson
,
S. D.
Carpenter
,
P. M.
Weber
, and
W. S.
Warren
,
Chem. Phys. Lett.
280
,
151
(
1997
).
32.

Note that in this work Ref. 31 only the spectral position, amplitude, spectral width, magnitude, and sign of the linear and quadratic chirp in the excitation pulse were controlled.

33.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum
, New York,
1981
).
34.
C. J.
Bardeen
,
Q.
Wang
, and
C. V.
Shank
,
Phys. Rev. Lett.
75
,
3410
(
1995
).
35.

The actinic (absorbed) energy of 0.5 nJ (see inset in Fig. 9) corresponds to the photon density of 8×1012photonscm2 for our experimental conditions. The concentration of molecules in the solvent can be calculated using the extinction coefficient for R101 ϵ=9.5×104lmolcm (Ref. 25) to be 1.9×1017cm3. For a path length of 0.02 cm a ratio of excited to nonexcited molecules 8×1012(1.9×1017×0.02) is 1:500.

36.
J. M.
Hayes
and
G. J.
Small
,
J. Lumin.
18/19
,
219
(
1979
).
37.
M.
Cowan
and
R. J. D.
Miller
(unpublished).
You do not currently have access to this content.