A recently developed density functional theory (DFT) for tethered bead-spring chains is used to investigate colloidal forces for the good solvent case. A planar surface of tethered chains is opposed to a bare, hard wall and the force exerted on the bare wall is calculated by way of the contact density. Previously, the case of large wall separation was investigated. The density profiles of the unperturbed chains, in that case, were found to be neither stepfunctions nor parabolas and were shown to accurately predict computer simulation results. In the present paper, the surface forces that result from the distortion of these density profiles at finite wall separation is studied. The resulting force function is analyzed for varying surface coverages, wall separations, and chain lengths. The results are found to be in near quantitative agreement with the scaling predictions of Alexander [S. Alexander, J. Phys. (Paris)38, 983 (1977)] when the layer thickness is “correctly” defined. Finally, a hybrid Alexander–DFT theory is suggested for the analysis of experimental results.

1.
T.
Kreer
,
S.
Metzger
,
M.
Muller
,
K.
Binder
, and
J.
Baschnagel
,
J. Chem. Phys.
120
,
4012
(
2004
).
2.
A.
Halperin
,
M.
Tirell
, and
T. P.
Lodge
,
Adv. Polym. Sci.
100
,
31
(
1992
).
3.
J. D.
McCoy
,
Y.
Ye
, and
J. G.
Curro
,
J. Phys. Chem.
117
,
2975
(
2002
).
4.
Y.
Ye
,
J. D.
McCoy
, and
J. G.
Curro
,
J. Phys. Chem.
119
,
555
(
2003
).
5.
S.
Mendez
,
J. G.
Curro
,
J. D.
McCoy
, and
G. P.
Lopez
,
Macromolecules
38
,
174
(
2005
).
In this paper, the notation z was used instead of L.
6.
M.
Murat
and
G. S.
Grest
,
Phys. Rev. Lett.
63
,
1074
(
1989
).
[PubMed]
A value of hext=42σ was used as the length scale for the analysis of the surface energy. Here we use (half the) onset separation, H0=36.75σ, to be consistent with the DFT analysis and have adjusted the simulation results to reflect this.
7.
S.
Alexander
,
J. Phys. (Paris)
38
,
983
(
1977
).
8.
9.
G. S.
Grest
,
Adv. Polym. Sci.
138
,
149
(
1999
).
10.
M.
Murat
and
G. S.
Grest
,
Macromolecules
29
,
8282
(
1996
).
11.
M.
Murat
and
G. S.
Grest
,
Macromolecules
22
,
4054
(
1989
).
12.
G. S.
Grest
,
J. Chem. Phys.
105
,
5532
(
1996
).
13.
G. S.
Grest
and
M.
Murat
,
Macromolecules
26
,
3108
(
1993
).
14.
J. G.
Curro
,
K. S.
Schweizer
,
G. S.
Grest
, and
K.
Kremer
,
J. Chem. Phys.
91
,
1357
(
1989
).
15.
J. D.
McCoy
,
M. A.
Teixeira
, and
J. D.
Curro
,
J. Chem. Phys.
114
,
4289
(
2001
).
16.
D.
Chandler
,
J. D.
McCoy
, and
S. J.
Singer
,
J. Chem. Phys.
85
,
5971
(
1986
).
17.
J. L.
Lebowitz
,
Phys. Fluids
3
,
64
(
1960
);
J. K.
Percus
,
J. Stat. Phys.
15
,
423
(
1976
);
R.
Dickman
and
C. K.
Hall
,
J. Chem. Phys.
89
,
3168
(
1988
).
18.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell Univ. Press
,
1976
).
19.
P.-G.
de Gennes
,
J. Phys. (Paris)
37
,
1445
(
1976
);
P.-G.
de Gennes
,
J. Phys. (Paris)
38
,
426
(
1977
).
20.
M.
Daoud
and
P.-G.
de Gennes
,
J. Phys. (Paris)
38
,
85
(
1977
).
21.
J.
des Cloizeaux
,
J. Phys. (Paris)
36
,
281
(
1975
).
22.
Y.
Ye
, thesis,
New Mexico Tech
(
2002
).
23.
H. J.
Taunton
,
C.
Toprakcioglu
,
L. J.
Fetters
, and
J.
Klein
,
Nature (London)
332
,
712
(
1988
);
H. J.
Taunton
,
C.
Toprakcioglu
,
L. J.
Fetters
, and
J.
Klein
,
Macromolecules
23
,
571
(
1990
).
24.
S.
Mendez
,
J. G.
Curro
,
M.
Putz
,
D.
Bechrov
, and
G. D.
Smith
,
J. Chem. Phys.
115
,
5669
(
2001
).
You do not currently have access to this content.