High-quality temperature-programmed desorption (TPD) measurements of n-butane from MgO(100) have been made for a large number of initial butane coverages (0–3.70 ML, ML–monolayers) and a wide range of heating ramp rates (0.310Ks). We present a TPD analysis technique which allows the coverage-dependent desorption energy to be accurately determined by mathematical inversion of a TPD spectrum, assuming only that the preexponential factor (prefactor) is coverage independent. A variational method is used to determine the prefactor that minimizes the difference between a set of simulated TPD spectra and corresponding experimental data. The best fit for butane desorption from MgO is obtained with a prefactor of 1015.7±1.6s1. The desorption energy is 34.9±3.4kJmol at 0.5-ML coverage, and varies with coverage approximately as Ed(θ)=34.5+0.566θ+8.37exp(θ0.101). Simulations based on these results can accurately reproduce TPD experiments for submonolayer initial coverages over a wide range of heating ramp rates (0.310Ks). Advantages and limitations of this method are discussed.

1.
J. S. J.
Hargreaves
,
G. J.
Hutchings
,
R. W.
Joyner
, and
C. J.
Kiely
,
J. Catal.
135
,
576
(
1992
).
2.
J. S. J.
Hargreaves
,
G. J.
Hutchings
, and
R. W.
Joyner
,
Nature (London)
348
,
428
(
1990
).
3.
H. J.
Freund
,
H.
Kuhlenbeck
, and
V.
Staemmler
,
Rep. Prog. Phys.
59
,
283
(
1996
).
4.
V. E.
Henrich
and
P. A.
Cox
,
The Surface Science of Metal Oxides
(
Cambridge University Press
, Cambridge,
1994
).
5.
C. T.
Campbell
,
Surf. Sci. Rep.
27
,
1
(
1997
).
6.
M.
Baumer
and
H. J.
Freund
,
Prog. Surf. Sci.
61
,
127
(
1999
).
7.
8.
R. Z.
Lei
,
A. J.
Gellman
, and
B. E.
Koel
,
Surf. Sci.
554
,
125
(
2004
).
9.
J. F.
Weaver
,
A. F.
Carlsson
, and
R. J.
Madix
,
Surf. Sci. Rep.
50
,
107
(
2003
).
10.
M.
Salmeron
and
G. A.
Somorjai
,
J. Phys. Chem.
85
,
3835
(
1981
).
11.
J. L.
Brand
,
M. V.
Arena
,
A. A.
Deckert
, and
S. M.
George
,
J. Chem. Phys.
92
,
5136
(
1990
).
12.
S. M.
Wetterer
,
D. J.
Lavrich
,
T.
Cummings
,
S. L.
Bernasek
, and
G.
Scoles
,
J. Phys. Chem. B
102
,
9266
(
1998
).
13.
R. M.
Slayton
,
C. M.
Aubuchon
,
T. L.
Camis
,
A. R.
Noble
, and
N. J.
Tro
,
J. Phys. Chem.
99
,
2151
(
1995
).
14.
A. J.
Gellman
and
K. R.
Paserba
,
J. Phys. Chem. B
106
,
13231
(
2002
).
15.
K. R.
Paserba
and
A. J.
Gellman
,
J. Chem. Phys.
115
,
6737
(
2001
).
16.
K. R.
Paserba
and
A. J.
Gellman
,
Phys. Rev. Lett.
86
,
4338
(
2001
).
17.
S. L.
Tait
,
Z.
Dohnálek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
122
,
164708
(
2005
), following paper.
18.
Z.
Dohnálek
,
G. A.
Kimmel
,
S. A.
Joyce
,
P.
Ayotte
,
R. S.
Smith
, and
B. D.
Kay
,
J. Phys. Chem. B
105
,
3747
(
2001
).
19.
H.
Schlichting
and
D.
Menzel
,
Rev. Sci. Instrum.
64
,
2013
(
1993
).
20.
S. W.
Pauls
and
C. T.
Campbell
,
Surf. Sci.
226
,
250
(
1990
).
21.
R. N.
Carter
and
A. B.
Anton
,
J. Vac. Sci. Technol. A
10
,
344
(
1992
).
22.
CRC Handbook of Chemistry and Physics
, edited by
D. R.
Lide
(
CRC
, Boca Raton, FL,
1992
).
25.
J. L.
Falconer
and
R. J.
Madix
,
Surf. Sci.
48
,
393
(
1975
).
26.
A. M.
de Jong
and
J. W.
Niemantsverdriet
,
Surf. Sci.
233
,
355
(
1990
).
27.
J. L.
Taylor
and
W. H.
Weinberg
,
Surf. Sci.
78
,
259
(
1978
).
28.
M. J.
Stirniman
,
C.
Huang
,
R. S.
Smith
,
S. A.
Joyce
, and
B. D.
Kay
,
J. Chem. Phys.
105
,
1295
(
1996
).
29.
R.
Wichtendahl
,
M.
Rodriguez-Rodrigo
,
U.
Hartel
,
H.
Kuhlenbeck
, and
H. J.
Freund
,
Phys. Status Solidi A
173
,
93
(
1999
).
30.
G. A.
Kimmel
,
M.
Persson
,
Z.
Dohnálek
, and
B. D.
Kay
,
J. Chem. Phys.
119
,
6776
(
2003
).
31.
J. L.
Daschbach
,
B. M.
Peden
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
120
,
1516
(
2004
).
32.
S.-R.
Liu
,
Z.
Dohnálek
,
R. S.
Smith
, and
B. D.
Kay
,
J. Phys. Chem. B
108
,
3644
(
2004
).
You do not currently have access to this content.